Users' Mathboxes Mathbox for Wolf Lammen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wl-mo2df Structured version   Visualization version   GIF version

Theorem wl-mo2df 37516
Description: Version of mof 2566 with a context and a distinctor replacing a distinct variable condition. This version should be used only to eliminate disjoint variable conditions. (Contributed by Wolf Lammen, 11-Aug-2019.)
Hypotheses
Ref Expression
wl-mo2df.1 𝑥𝜑
wl-mo2df.2 𝑦𝜑
wl-mo2df.3 (𝜑 → ¬ ∀𝑥 𝑥 = 𝑦)
wl-mo2df.4 (𝜑 → Ⅎ𝑦𝜓)
Assertion
Ref Expression
wl-mo2df (𝜑 → (∃*𝑥𝜓 ↔ ∃𝑦𝑥(𝜓𝑥 = 𝑦)))

Proof of Theorem wl-mo2df
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 df-mo 2543 . 2 (∃*𝑥𝜓 ↔ ∃𝑢𝑥(𝜓𝑥 = 𝑢))
2 wl-mo2df.2 . . 3 𝑦𝜑
3 wl-mo2df.1 . . . 4 𝑥𝜑
4 wl-mo2df.4 . . . . 5 (𝜑 → Ⅎ𝑦𝜓)
5 wl-mo2df.3 . . . . . 6 (𝜑 → ¬ ∀𝑥 𝑥 = 𝑦)
6 nfeqf1 2387 . . . . . . 7 (¬ ∀𝑦 𝑦 = 𝑥 → Ⅎ𝑦 𝑥 = 𝑢)
76naecoms 2437 . . . . . 6 (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑦 𝑥 = 𝑢)
85, 7syl 17 . . . . 5 (𝜑 → Ⅎ𝑦 𝑥 = 𝑢)
94, 8nfimd 1893 . . . 4 (𝜑 → Ⅎ𝑦(𝜓𝑥 = 𝑢))
103, 9nfald 2332 . . 3 (𝜑 → Ⅎ𝑦𝑥(𝜓𝑥 = 𝑢))
11 nfnae 2442 . . . . . . 7 𝑥 ¬ ∀𝑥 𝑥 = 𝑦
12 nfeqf2 2385 . . . . . . 7 (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥 𝑢 = 𝑦)
1311, 12nfan1 2201 . . . . . 6 𝑥(¬ ∀𝑥 𝑥 = 𝑦𝑢 = 𝑦)
14 equequ2 2025 . . . . . . . 8 (𝑢 = 𝑦 → (𝑥 = 𝑢𝑥 = 𝑦))
1514imbi2d 340 . . . . . . 7 (𝑢 = 𝑦 → ((𝜓𝑥 = 𝑢) ↔ (𝜓𝑥 = 𝑦)))
1615adantl 481 . . . . . 6 ((¬ ∀𝑥 𝑥 = 𝑦𝑢 = 𝑦) → ((𝜓𝑥 = 𝑢) ↔ (𝜓𝑥 = 𝑦)))
1713, 16albid 2223 . . . . 5 ((¬ ∀𝑥 𝑥 = 𝑦𝑢 = 𝑦) → (∀𝑥(𝜓𝑥 = 𝑢) ↔ ∀𝑥(𝜓𝑥 = 𝑦)))
185, 17sylan 579 . . . 4 ((𝜑𝑢 = 𝑦) → (∀𝑥(𝜓𝑥 = 𝑢) ↔ ∀𝑥(𝜓𝑥 = 𝑦)))
1918ex 412 . . 3 (𝜑 → (𝑢 = 𝑦 → (∀𝑥(𝜓𝑥 = 𝑢) ↔ ∀𝑥(𝜓𝑥 = 𝑦))))
202, 10, 19cbvexd 2416 . 2 (𝜑 → (∃𝑢𝑥(𝜓𝑥 = 𝑢) ↔ ∃𝑦𝑥(𝜓𝑥 = 𝑦)))
211, 20bitrid 283 1 (𝜑 → (∃*𝑥𝜓 ↔ ∃𝑦𝑥(𝜓𝑥 = 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wal 1535  wex 1777  wnf 1781  ∃*wmo 2541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-10 2141  ax-11 2158  ax-12 2178  ax-13 2380
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-ex 1778  df-nf 1782  df-mo 2543
This theorem is referenced by:  wl-mo2tf  37517
  Copyright terms: Public domain W3C validator