Users' Mathboxes Mathbox for Wolf Lammen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wl-cbvalsbi Structured version   Visualization version   GIF version

Theorem wl-cbvalsbi 35683
Description: Change bounded variables in a special case. The reverse direction seems to involve ax-11 2157. My hope is that I will in some future be able to prove mo3 2565 with reversed quantifiers not using ax-11 2157. See also the remark in mo4 2567, which lead me to this effort. (Contributed by Wolf Lammen, 5-Mar-2024.)
Assertion
Ref Expression
wl-cbvalsbi (∀𝑥𝜑 → ∀𝑦[𝑦 / 𝑥]𝜑)
Distinct variable groups:   𝑥,𝑦   𝜑,𝑦
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem wl-cbvalsbi
StepHypRef Expression
1 stdpc4 2074 . 2 (∀𝑥𝜑 → [𝑦 / 𝑥]𝜑)
21alrimiv 1933 1 (∀𝑥𝜑 → ∀𝑦[𝑦 / 𝑥]𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1539  [wsb 2070
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916
This theorem depends on definitions:  df-bi 206  df-sb 2071
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator