| Step | Hyp | Ref
| Expression |
| 1 | | df-mo 2540 |
. . 3
⊢
(∃*𝑥𝜑 ↔ ∃𝑧∀𝑥(𝜑 → 𝑥 = 𝑧)) |
| 2 | | mo4.1 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| 3 | | equequ1 2025 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → (𝑥 = 𝑧 ↔ 𝑦 = 𝑧)) |
| 4 | 2, 3 | imbi12d 344 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → ((𝜑 → 𝑥 = 𝑧) ↔ (𝜓 → 𝑦 = 𝑧))) |
| 5 | 4 | cbvalvw 2036 |
. . . . . 6
⊢
(∀𝑥(𝜑 → 𝑥 = 𝑧) ↔ ∀𝑦(𝜓 → 𝑦 = 𝑧)) |
| 6 | 5 | biimpi 216 |
. . . . 5
⊢
(∀𝑥(𝜑 → 𝑥 = 𝑧) → ∀𝑦(𝜓 → 𝑦 = 𝑧)) |
| 7 | | pm2.27 42 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝜑 → 𝑥 = 𝑧) → 𝑥 = 𝑧)) |
| 8 | | pm2.27 42 |
. . . . . . . . . . 11
⊢ (𝜓 → ((𝜓 → 𝑦 = 𝑧) → 𝑦 = 𝑧)) |
| 9 | 7, 8 | im2anan9 620 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝜓) → (((𝜑 → 𝑥 = 𝑧) ∧ (𝜓 → 𝑦 = 𝑧)) → (𝑥 = 𝑧 ∧ 𝑦 = 𝑧))) |
| 10 | | equtr2 2027 |
. . . . . . . . . 10
⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑧) → 𝑥 = 𝑦) |
| 11 | 9, 10 | syl6com 37 |
. . . . . . . . 9
⊢ (((𝜑 → 𝑥 = 𝑧) ∧ (𝜓 → 𝑦 = 𝑧)) → ((𝜑 ∧ 𝜓) → 𝑥 = 𝑦)) |
| 12 | 11 | ex 412 |
. . . . . . . 8
⊢ ((𝜑 → 𝑥 = 𝑧) → ((𝜓 → 𝑦 = 𝑧) → ((𝜑 ∧ 𝜓) → 𝑥 = 𝑦))) |
| 13 | 12 | alimdv 1916 |
. . . . . . 7
⊢ ((𝜑 → 𝑥 = 𝑧) → (∀𝑦(𝜓 → 𝑦 = 𝑧) → ∀𝑦((𝜑 ∧ 𝜓) → 𝑥 = 𝑦))) |
| 14 | 13 | com12 32 |
. . . . . 6
⊢
(∀𝑦(𝜓 → 𝑦 = 𝑧) → ((𝜑 → 𝑥 = 𝑧) → ∀𝑦((𝜑 ∧ 𝜓) → 𝑥 = 𝑦))) |
| 15 | 14 | alimdv 1916 |
. . . . 5
⊢
(∀𝑦(𝜓 → 𝑦 = 𝑧) → (∀𝑥(𝜑 → 𝑥 = 𝑧) → ∀𝑥∀𝑦((𝜑 ∧ 𝜓) → 𝑥 = 𝑦))) |
| 16 | 6, 15 | mpcom 38 |
. . . 4
⊢
(∀𝑥(𝜑 → 𝑥 = 𝑧) → ∀𝑥∀𝑦((𝜑 ∧ 𝜓) → 𝑥 = 𝑦)) |
| 17 | 16 | exlimiv 1930 |
. . 3
⊢
(∃𝑧∀𝑥(𝜑 → 𝑥 = 𝑧) → ∀𝑥∀𝑦((𝜑 ∧ 𝜓) → 𝑥 = 𝑦)) |
| 18 | 1, 17 | sylbi 217 |
. 2
⊢
(∃*𝑥𝜑 → ∀𝑥∀𝑦((𝜑 ∧ 𝜓) → 𝑥 = 𝑦)) |
| 19 | 2 | cbvexvw 2037 |
. . . . 5
⊢
(∃𝑥𝜑 ↔ ∃𝑦𝜓) |
| 20 | 19 | biimpri 228 |
. . . 4
⊢
(∃𝑦𝜓 → ∃𝑥𝜑) |
| 21 | | ax6evr 2015 |
. . . . . . . 8
⊢
∃𝑧 𝑥 = 𝑧 |
| 22 | | pm3.2 469 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝜓 → (𝜑 ∧ 𝜓))) |
| 23 | 22 | imim1d 82 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (((𝜑 ∧ 𝜓) → 𝑥 = 𝑦) → (𝜓 → 𝑥 = 𝑦))) |
| 24 | | ax7 2016 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑦 → (𝑥 = 𝑧 → 𝑦 = 𝑧)) |
| 25 | 23, 24 | syl8 76 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (((𝜑 ∧ 𝜓) → 𝑥 = 𝑦) → (𝜓 → (𝑥 = 𝑧 → 𝑦 = 𝑧)))) |
| 26 | 25 | com4r 94 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑧 → (𝜑 → (((𝜑 ∧ 𝜓) → 𝑥 = 𝑦) → (𝜓 → 𝑦 = 𝑧)))) |
| 27 | 26 | impcom 407 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 = 𝑧) → (((𝜑 ∧ 𝜓) → 𝑥 = 𝑦) → (𝜓 → 𝑦 = 𝑧))) |
| 28 | 27 | alimdv 1916 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 = 𝑧) → (∀𝑦((𝜑 ∧ 𝜓) → 𝑥 = 𝑦) → ∀𝑦(𝜓 → 𝑦 = 𝑧))) |
| 29 | 28 | impancom 451 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ∀𝑦((𝜑 ∧ 𝜓) → 𝑥 = 𝑦)) → (𝑥 = 𝑧 → ∀𝑦(𝜓 → 𝑦 = 𝑧))) |
| 30 | 29 | eximdv 1917 |
. . . . . . . 8
⊢ ((𝜑 ∧ ∀𝑦((𝜑 ∧ 𝜓) → 𝑥 = 𝑦)) → (∃𝑧 𝑥 = 𝑧 → ∃𝑧∀𝑦(𝜓 → 𝑦 = 𝑧))) |
| 31 | 21, 30 | mpi 20 |
. . . . . . 7
⊢ ((𝜑 ∧ ∀𝑦((𝜑 ∧ 𝜓) → 𝑥 = 𝑦)) → ∃𝑧∀𝑦(𝜓 → 𝑦 = 𝑧)) |
| 32 | | df-mo 2540 |
. . . . . . 7
⊢
(∃*𝑦𝜓 ↔ ∃𝑧∀𝑦(𝜓 → 𝑦 = 𝑧)) |
| 33 | 31, 32 | sylibr 234 |
. . . . . 6
⊢ ((𝜑 ∧ ∀𝑦((𝜑 ∧ 𝜓) → 𝑥 = 𝑦)) → ∃*𝑦𝜓) |
| 34 | 33 | expcom 413 |
. . . . 5
⊢
(∀𝑦((𝜑 ∧ 𝜓) → 𝑥 = 𝑦) → (𝜑 → ∃*𝑦𝜓)) |
| 35 | 34 | aleximi 1832 |
. . . 4
⊢
(∀𝑥∀𝑦((𝜑 ∧ 𝜓) → 𝑥 = 𝑦) → (∃𝑥𝜑 → ∃𝑥∃*𝑦𝜓)) |
| 36 | | ax5e 1912 |
. . . 4
⊢
(∃𝑥∃*𝑦𝜓 → ∃*𝑦𝜓) |
| 37 | 20, 35, 36 | syl56 36 |
. . 3
⊢
(∀𝑥∀𝑦((𝜑 ∧ 𝜓) → 𝑥 = 𝑦) → (∃𝑦𝜓 → ∃*𝑦𝜓)) |
| 38 | 5 | exbii 1848 |
. . . . 5
⊢
(∃𝑧∀𝑥(𝜑 → 𝑥 = 𝑧) ↔ ∃𝑧∀𝑦(𝜓 → 𝑦 = 𝑧)) |
| 39 | 38, 1, 32 | 3bitr4i 303 |
. . . 4
⊢
(∃*𝑥𝜑 ↔ ∃*𝑦𝜓) |
| 40 | | moabs 2543 |
. . . 4
⊢
(∃*𝑦𝜓 ↔ (∃𝑦𝜓 → ∃*𝑦𝜓)) |
| 41 | 39, 40 | bitri 275 |
. . 3
⊢
(∃*𝑥𝜑 ↔ (∃𝑦𝜓 → ∃*𝑦𝜓)) |
| 42 | 37, 41 | sylibr 234 |
. 2
⊢
(∀𝑥∀𝑦((𝜑 ∧ 𝜓) → 𝑥 = 𝑦) → ∃*𝑥𝜑) |
| 43 | 18, 42 | impbii 209 |
1
⊢
(∃*𝑥𝜑 ↔ ∀𝑥∀𝑦((𝜑 ∧ 𝜓) → 𝑥 = 𝑦)) |