MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mo4 Structured version   Visualization version   GIF version

Theorem mo4 2559
Description: At-most-one quantifier expressed using implicit substitution. This theorem is also a direct consequence of mo4f 2560, but this proof is based on fewer axioms.

By the way, swapping 𝑥, 𝑦 and 𝜑, 𝜓 leads to an expression for ∃*𝑦𝜓, which is equivalent to ∃*𝑥𝜑 (is a proof line), so the right hand side is a rare instance of an expression where swapping the quantifiers can be done without ax-11 2158. (Contributed by NM, 26-Jul-1995.) Reduce axiom usage. (Revised by Wolf Lammen, 18-Oct-2023.)

Hypothesis
Ref Expression
mo4.1 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
mo4 (∃*𝑥𝜑 ↔ ∀𝑥𝑦((𝜑𝜓) → 𝑥 = 𝑦))
Distinct variable groups:   𝑥,𝑦   𝜑,𝑦   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)

Proof of Theorem mo4
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-mo 2533 . . 3 (∃*𝑥𝜑 ↔ ∃𝑧𝑥(𝜑𝑥 = 𝑧))
2 mo4.1 . . . . . . . 8 (𝑥 = 𝑦 → (𝜑𝜓))
3 equequ1 2025 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥 = 𝑧𝑦 = 𝑧))
42, 3imbi12d 344 . . . . . . 7 (𝑥 = 𝑦 → ((𝜑𝑥 = 𝑧) ↔ (𝜓𝑦 = 𝑧)))
54cbvalvw 2036 . . . . . 6 (∀𝑥(𝜑𝑥 = 𝑧) ↔ ∀𝑦(𝜓𝑦 = 𝑧))
65biimpi 216 . . . . 5 (∀𝑥(𝜑𝑥 = 𝑧) → ∀𝑦(𝜓𝑦 = 𝑧))
7 pm2.27 42 . . . . . . . . . . 11 (𝜑 → ((𝜑𝑥 = 𝑧) → 𝑥 = 𝑧))
8 pm2.27 42 . . . . . . . . . . 11 (𝜓 → ((𝜓𝑦 = 𝑧) → 𝑦 = 𝑧))
97, 8im2anan9 620 . . . . . . . . . 10 ((𝜑𝜓) → (((𝜑𝑥 = 𝑧) ∧ (𝜓𝑦 = 𝑧)) → (𝑥 = 𝑧𝑦 = 𝑧)))
10 equtr2 2027 . . . . . . . . . 10 ((𝑥 = 𝑧𝑦 = 𝑧) → 𝑥 = 𝑦)
119, 10syl6com 37 . . . . . . . . 9 (((𝜑𝑥 = 𝑧) ∧ (𝜓𝑦 = 𝑧)) → ((𝜑𝜓) → 𝑥 = 𝑦))
1211ex 412 . . . . . . . 8 ((𝜑𝑥 = 𝑧) → ((𝜓𝑦 = 𝑧) → ((𝜑𝜓) → 𝑥 = 𝑦)))
1312alimdv 1916 . . . . . . 7 ((𝜑𝑥 = 𝑧) → (∀𝑦(𝜓𝑦 = 𝑧) → ∀𝑦((𝜑𝜓) → 𝑥 = 𝑦)))
1413com12 32 . . . . . 6 (∀𝑦(𝜓𝑦 = 𝑧) → ((𝜑𝑥 = 𝑧) → ∀𝑦((𝜑𝜓) → 𝑥 = 𝑦)))
1514alimdv 1916 . . . . 5 (∀𝑦(𝜓𝑦 = 𝑧) → (∀𝑥(𝜑𝑥 = 𝑧) → ∀𝑥𝑦((𝜑𝜓) → 𝑥 = 𝑦)))
166, 15mpcom 38 . . . 4 (∀𝑥(𝜑𝑥 = 𝑧) → ∀𝑥𝑦((𝜑𝜓) → 𝑥 = 𝑦))
1716exlimiv 1930 . . 3 (∃𝑧𝑥(𝜑𝑥 = 𝑧) → ∀𝑥𝑦((𝜑𝜓) → 𝑥 = 𝑦))
181, 17sylbi 217 . 2 (∃*𝑥𝜑 → ∀𝑥𝑦((𝜑𝜓) → 𝑥 = 𝑦))
192cbvexvw 2037 . . . . 5 (∃𝑥𝜑 ↔ ∃𝑦𝜓)
2019biimpri 228 . . . 4 (∃𝑦𝜓 → ∃𝑥𝜑)
21 ax6evr 2015 . . . . . . . 8 𝑧 𝑥 = 𝑧
22 pm3.2 469 . . . . . . . . . . . . . . 15 (𝜑 → (𝜓 → (𝜑𝜓)))
2322imim1d 82 . . . . . . . . . . . . . 14 (𝜑 → (((𝜑𝜓) → 𝑥 = 𝑦) → (𝜓𝑥 = 𝑦)))
24 ax7 2016 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → (𝑥 = 𝑧𝑦 = 𝑧))
2523, 24syl8 76 . . . . . . . . . . . . 13 (𝜑 → (((𝜑𝜓) → 𝑥 = 𝑦) → (𝜓 → (𝑥 = 𝑧𝑦 = 𝑧))))
2625com4r 94 . . . . . . . . . . . 12 (𝑥 = 𝑧 → (𝜑 → (((𝜑𝜓) → 𝑥 = 𝑦) → (𝜓𝑦 = 𝑧))))
2726impcom 407 . . . . . . . . . . 11 ((𝜑𝑥 = 𝑧) → (((𝜑𝜓) → 𝑥 = 𝑦) → (𝜓𝑦 = 𝑧)))
2827alimdv 1916 . . . . . . . . . 10 ((𝜑𝑥 = 𝑧) → (∀𝑦((𝜑𝜓) → 𝑥 = 𝑦) → ∀𝑦(𝜓𝑦 = 𝑧)))
2928impancom 451 . . . . . . . . 9 ((𝜑 ∧ ∀𝑦((𝜑𝜓) → 𝑥 = 𝑦)) → (𝑥 = 𝑧 → ∀𝑦(𝜓𝑦 = 𝑧)))
3029eximdv 1917 . . . . . . . 8 ((𝜑 ∧ ∀𝑦((𝜑𝜓) → 𝑥 = 𝑦)) → (∃𝑧 𝑥 = 𝑧 → ∃𝑧𝑦(𝜓𝑦 = 𝑧)))
3121, 30mpi 20 . . . . . . 7 ((𝜑 ∧ ∀𝑦((𝜑𝜓) → 𝑥 = 𝑦)) → ∃𝑧𝑦(𝜓𝑦 = 𝑧))
32 df-mo 2533 . . . . . . 7 (∃*𝑦𝜓 ↔ ∃𝑧𝑦(𝜓𝑦 = 𝑧))
3331, 32sylibr 234 . . . . . 6 ((𝜑 ∧ ∀𝑦((𝜑𝜓) → 𝑥 = 𝑦)) → ∃*𝑦𝜓)
3433expcom 413 . . . . 5 (∀𝑦((𝜑𝜓) → 𝑥 = 𝑦) → (𝜑 → ∃*𝑦𝜓))
3534aleximi 1832 . . . 4 (∀𝑥𝑦((𝜑𝜓) → 𝑥 = 𝑦) → (∃𝑥𝜑 → ∃𝑥∃*𝑦𝜓))
36 ax5e 1912 . . . 4 (∃𝑥∃*𝑦𝜓 → ∃*𝑦𝜓)
3720, 35, 36syl56 36 . . 3 (∀𝑥𝑦((𝜑𝜓) → 𝑥 = 𝑦) → (∃𝑦𝜓 → ∃*𝑦𝜓))
385exbii 1848 . . . . 5 (∃𝑧𝑥(𝜑𝑥 = 𝑧) ↔ ∃𝑧𝑦(𝜓𝑦 = 𝑧))
3938, 1, 323bitr4i 303 . . . 4 (∃*𝑥𝜑 ↔ ∃*𝑦𝜓)
40 moabs 2536 . . . 4 (∃*𝑦𝜓 ↔ (∃𝑦𝜓 → ∃*𝑦𝜓))
4139, 40bitri 275 . . 3 (∃*𝑥𝜑 ↔ (∃𝑦𝜓 → ∃*𝑦𝜓))
4237, 41sylibr 234 . 2 (∀𝑥𝑦((𝜑𝜓) → 𝑥 = 𝑦) → ∃*𝑥𝜑)
4318, 42impbii 209 1 (∃*𝑥𝜑 ↔ ∀𝑥𝑦((𝜑𝜓) → 𝑥 = 𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1538  wex 1779  ∃*wmo 2531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-mo 2533
This theorem is referenced by:  eu4  2608  moel  3365  moeq  3667  rmo4  3690  mosneq  4793  dffun6  6493  fun11  6556  brprcneu  6812  brprcneuALT  6813  dff13  7191  caovmo  7586  wemoiso  7908  wemoiso2  7909  addsrmo  10967  mulsrmo  10968  summo  15624  prodmo  15843  hausflimi  23865  vitalilem3  25509  plyexmo  26219  nosupprefixmo  27610  noinfprefixmo  27611  tglineintmo  28587  ajmoi  30802  pjhthmo  31246  adjmo  31776  satfv0  35341  satfv0fun  35354  satffunlem1lem1  35385  satffunlem2lem1  35387  funtransport  36015  funray  36124  funline  36126  lineintmo  36141  cossssid4  38457  dffrege115  43961  mof0ALT  48834  mofsn  48838  f1omoOLD  48888  thincmo  49423  euendfunc  49521
  Copyright terms: Public domain W3C validator