Step | Hyp | Ref
| Expression |
1 | | df-mo 2540 |
. . 3
⊢
(∃*𝑥𝜑 ↔ ∃𝑧∀𝑥(𝜑 → 𝑥 = 𝑧)) |
2 | | mo4.1 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
3 | | equequ1 2029 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → (𝑥 = 𝑧 ↔ 𝑦 = 𝑧)) |
4 | 2, 3 | imbi12d 344 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → ((𝜑 → 𝑥 = 𝑧) ↔ (𝜓 → 𝑦 = 𝑧))) |
5 | 4 | cbvalvw 2040 |
. . . . . 6
⊢
(∀𝑥(𝜑 → 𝑥 = 𝑧) ↔ ∀𝑦(𝜓 → 𝑦 = 𝑧)) |
6 | 5 | biimpi 215 |
. . . . 5
⊢
(∀𝑥(𝜑 → 𝑥 = 𝑧) → ∀𝑦(𝜓 → 𝑦 = 𝑧)) |
7 | | pm2.27 42 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝜑 → 𝑥 = 𝑧) → 𝑥 = 𝑧)) |
8 | 7 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝜓) → ((𝜑 → 𝑥 = 𝑧) → 𝑥 = 𝑧)) |
9 | | pm2.27 42 |
. . . . . . . . . . . 12
⊢ (𝜓 → ((𝜓 → 𝑦 = 𝑧) → 𝑦 = 𝑧)) |
10 | 9 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝜓) → ((𝜓 → 𝑦 = 𝑧) → 𝑦 = 𝑧)) |
11 | 8, 10 | anim12d 608 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝜓) → (((𝜑 → 𝑥 = 𝑧) ∧ (𝜓 → 𝑦 = 𝑧)) → (𝑥 = 𝑧 ∧ 𝑦 = 𝑧))) |
12 | | equtr2 2031 |
. . . . . . . . . 10
⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑧) → 𝑥 = 𝑦) |
13 | 11, 12 | syl6com 37 |
. . . . . . . . 9
⊢ (((𝜑 → 𝑥 = 𝑧) ∧ (𝜓 → 𝑦 = 𝑧)) → ((𝜑 ∧ 𝜓) → 𝑥 = 𝑦)) |
14 | 13 | ex 412 |
. . . . . . . 8
⊢ ((𝜑 → 𝑥 = 𝑧) → ((𝜓 → 𝑦 = 𝑧) → ((𝜑 ∧ 𝜓) → 𝑥 = 𝑦))) |
15 | 14 | alimdv 1920 |
. . . . . . 7
⊢ ((𝜑 → 𝑥 = 𝑧) → (∀𝑦(𝜓 → 𝑦 = 𝑧) → ∀𝑦((𝜑 ∧ 𝜓) → 𝑥 = 𝑦))) |
16 | 15 | com12 32 |
. . . . . 6
⊢
(∀𝑦(𝜓 → 𝑦 = 𝑧) → ((𝜑 → 𝑥 = 𝑧) → ∀𝑦((𝜑 ∧ 𝜓) → 𝑥 = 𝑦))) |
17 | 16 | alimdv 1920 |
. . . . 5
⊢
(∀𝑦(𝜓 → 𝑦 = 𝑧) → (∀𝑥(𝜑 → 𝑥 = 𝑧) → ∀𝑥∀𝑦((𝜑 ∧ 𝜓) → 𝑥 = 𝑦))) |
18 | 6, 17 | mpcom 38 |
. . . 4
⊢
(∀𝑥(𝜑 → 𝑥 = 𝑧) → ∀𝑥∀𝑦((𝜑 ∧ 𝜓) → 𝑥 = 𝑦)) |
19 | 18 | exlimiv 1934 |
. . 3
⊢
(∃𝑧∀𝑥(𝜑 → 𝑥 = 𝑧) → ∀𝑥∀𝑦((𝜑 ∧ 𝜓) → 𝑥 = 𝑦)) |
20 | 1, 19 | sylbi 216 |
. 2
⊢
(∃*𝑥𝜑 → ∀𝑥∀𝑦((𝜑 ∧ 𝜓) → 𝑥 = 𝑦)) |
21 | 2 | cbvexvw 2041 |
. . . . 5
⊢
(∃𝑥𝜑 ↔ ∃𝑦𝜓) |
22 | 21 | biimpri 227 |
. . . 4
⊢
(∃𝑦𝜓 → ∃𝑥𝜑) |
23 | | ax6evr 2019 |
. . . . . . . 8
⊢
∃𝑧 𝑥 = 𝑧 |
24 | | pm3.2 469 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝜓 → (𝜑 ∧ 𝜓))) |
25 | 24 | imim1d 82 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (((𝜑 ∧ 𝜓) → 𝑥 = 𝑦) → (𝜓 → 𝑥 = 𝑦))) |
26 | | ax7 2020 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑦 → (𝑥 = 𝑧 → 𝑦 = 𝑧)) |
27 | 25, 26 | syl8 76 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (((𝜑 ∧ 𝜓) → 𝑥 = 𝑦) → (𝜓 → (𝑥 = 𝑧 → 𝑦 = 𝑧)))) |
28 | 27 | com4r 94 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑧 → (𝜑 → (((𝜑 ∧ 𝜓) → 𝑥 = 𝑦) → (𝜓 → 𝑦 = 𝑧)))) |
29 | 28 | impcom 407 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 = 𝑧) → (((𝜑 ∧ 𝜓) → 𝑥 = 𝑦) → (𝜓 → 𝑦 = 𝑧))) |
30 | 29 | alimdv 1920 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 = 𝑧) → (∀𝑦((𝜑 ∧ 𝜓) → 𝑥 = 𝑦) → ∀𝑦(𝜓 → 𝑦 = 𝑧))) |
31 | 30 | impancom 451 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ∀𝑦((𝜑 ∧ 𝜓) → 𝑥 = 𝑦)) → (𝑥 = 𝑧 → ∀𝑦(𝜓 → 𝑦 = 𝑧))) |
32 | 31 | eximdv 1921 |
. . . . . . . 8
⊢ ((𝜑 ∧ ∀𝑦((𝜑 ∧ 𝜓) → 𝑥 = 𝑦)) → (∃𝑧 𝑥 = 𝑧 → ∃𝑧∀𝑦(𝜓 → 𝑦 = 𝑧))) |
33 | 23, 32 | mpi 20 |
. . . . . . 7
⊢ ((𝜑 ∧ ∀𝑦((𝜑 ∧ 𝜓) → 𝑥 = 𝑦)) → ∃𝑧∀𝑦(𝜓 → 𝑦 = 𝑧)) |
34 | | df-mo 2540 |
. . . . . . 7
⊢
(∃*𝑦𝜓 ↔ ∃𝑧∀𝑦(𝜓 → 𝑦 = 𝑧)) |
35 | 33, 34 | sylibr 233 |
. . . . . 6
⊢ ((𝜑 ∧ ∀𝑦((𝜑 ∧ 𝜓) → 𝑥 = 𝑦)) → ∃*𝑦𝜓) |
36 | 35 | expcom 413 |
. . . . 5
⊢
(∀𝑦((𝜑 ∧ 𝜓) → 𝑥 = 𝑦) → (𝜑 → ∃*𝑦𝜓)) |
37 | 36 | aleximi 1835 |
. . . 4
⊢
(∀𝑥∀𝑦((𝜑 ∧ 𝜓) → 𝑥 = 𝑦) → (∃𝑥𝜑 → ∃𝑥∃*𝑦𝜓)) |
38 | | ax5e 1916 |
. . . 4
⊢
(∃𝑥∃*𝑦𝜓 → ∃*𝑦𝜓) |
39 | 22, 37, 38 | syl56 36 |
. . 3
⊢
(∀𝑥∀𝑦((𝜑 ∧ 𝜓) → 𝑥 = 𝑦) → (∃𝑦𝜓 → ∃*𝑦𝜓)) |
40 | 5 | exbii 1851 |
. . . . 5
⊢
(∃𝑧∀𝑥(𝜑 → 𝑥 = 𝑧) ↔ ∃𝑧∀𝑦(𝜓 → 𝑦 = 𝑧)) |
41 | 40, 1, 34 | 3bitr4i 302 |
. . . 4
⊢
(∃*𝑥𝜑 ↔ ∃*𝑦𝜓) |
42 | | moabs 2543 |
. . . 4
⊢
(∃*𝑦𝜓 ↔ (∃𝑦𝜓 → ∃*𝑦𝜓)) |
43 | 41, 42 | bitri 274 |
. . 3
⊢
(∃*𝑥𝜑 ↔ (∃𝑦𝜓 → ∃*𝑦𝜓)) |
44 | 39, 43 | sylibr 233 |
. 2
⊢
(∀𝑥∀𝑦((𝜑 ∧ 𝜓) → 𝑥 = 𝑦) → ∃*𝑥𝜑) |
45 | 20, 44 | impbii 208 |
1
⊢
(∃*𝑥𝜑 ↔ ∀𝑥∀𝑦((𝜑 ∧ 𝜓) → 𝑥 = 𝑦)) |