| Mathbox for Wolf Lammen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > wl-cleq-1 | Structured version Visualization version GIF version | ||
| Description:
Disclaimer: The material presented here is just my (WL's) personal perception. I am not an expert in this field, so some or all of the text here can be misleading, or outright wrong. This text should be read as an exploration rather than as definite statements, open to doubt, alternatives, and reinterpretation.
Grammars and Parsable contentsA Metamath program is a text-based tool. Its input consists of primarily of human-readable and editable text stored in *.mm files. For automated processing, these files follow a strict structure. This enables automated analysis of their contents, verification of proofs, proof assistance, and the generation of output files - for example, the HTML page of this dummy theorem. A set.mm file contains numerous such structured instructions serving these purposes. This page provides a brief explanation of the general concepts behind structured text, as exemplified by set.mm. The study of structured text originated in linguistics, and later computer science formalized it further for text like data and program code. The rules describing such structures are collectively known as grammar. Metamath also introduces a grammar to support automation and establish a high degree of confidence in its correctness. It could have been described using the terminology of earlier scientific disciplines, but instead it uses its own language. When a text exhibits a sufficiently regular structure, its form can be described by a set of syntax rules, or grammar. Such rules consist of terminal symbols (fixed, literal elements) and non-terminal symbols, which can recursively be expanded using the grammar's rewrite rules. A program component that applies a grammar to text is called a parser. The parser decomposes the text into smaller parts, called syntactic units, while often maintaining contextual information. These units may then be handed over to subsequent components for further processing, such as populating a database or generating output. In these pages, we restrict our attention to strictly formatted material consisting of formulas with logical and mathematical content. These syntactic units are embedded in higher-level structures such as chapters, together with commands that, for example, control the HTML output. Conceptually, the parsing process can be viewed as consisting of two stages. The top-level stage applies a simple built-in grammar to identify its structural units. Each unit is a text region marked on both sides with predefined tokens (in Metamath: keywords), beginning with the escape character "$". Text regions containing logical or mathematical formulas are then passed to a second-stage parser, which applies a different grammar. Unlike the first, this grammar is not built-in but is dynamically constructed. In what follows, we will ignore the first stage of parsing, since its role is only to extract the relevant material embedded within text primarily intended for human readers. (Contributed by Wolf Lammen, 18-Aug-2025.) |
| Ref | Expression |
|---|---|
| wl-cleq-1 | ⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfcleq 2729 | 1 ⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∀wal 1538 = wceq 1540 ∈ wcel 2108 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2728 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |