| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfcleq | Structured version Visualization version GIF version | ||
| Description: The defining characterization of class equality. It is proved, over Tarski's FOL, from the axiom of (set) extensionality (ax-ext 2701) and the definition of class equality (df-cleq 2721). Its forward implication is called "class extensionality". Remark: the proof uses axextb 2704 to prove also the hypothesis of df-cleq 2721 that is a degenerate instance, but it could be proved also from minimal propositional calculus and { ax-gen 1795, equid 2012 }. (Contributed by NM, 15-Sep-1993.) (Revised by BJ, 24-Jun-2019.) |
| Ref | Expression |
|---|---|
| dfcleq | ⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axextb 2704 | . 2 ⊢ (𝑦 = 𝑧 ↔ ∀𝑢(𝑢 ∈ 𝑦 ↔ 𝑢 ∈ 𝑧)) | |
| 2 | axextb 2704 | . 2 ⊢ (𝑡 = 𝑡 ↔ ∀𝑣(𝑣 ∈ 𝑡 ↔ 𝑣 ∈ 𝑡)) | |
| 3 | 1, 2 | df-cleq 2721 | 1 ⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∀wal 1538 = wceq 1540 ∈ wcel 2109 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 |
| This theorem is referenced by: cvjust 2723 ax9ALT 2724 eleq2w2 2725 eqriv 2726 eqrdv 2727 eqeq1d 2731 eqeq1dALT 2732 abbib 2798 eqabbw 2802 eleq2d 2814 eleq2dALT 2815 cleqh 2857 nfeqd 2902 cleqf 2920 rexeq 3292 raleqbidvvOLD 3305 rmoeq1 3384 eqv 3454 abv 3456 csbied 3895 dfss2 3929 eqss 3959 ssequn1 4145 vn0 4304 eq0 4309 eq0ALT 4310 ab0w 4338 ab0orv 4342 eq0rdv 4366 disj 4409 disj3 4413 undif4 4426 rzal 4468 ralf0 4473 intprg 4941 vnex 5264 inex1 5267 axprALT 5372 zfpair2 5383 sucel 6396 uniex2 7694 brtxpsd3 35857 hfext 36144 in-ax8 36185 onsuct0 36402 eliminable2a 36821 eliminable2b 36822 eliminable2c 36823 eliminable-veqab 36827 eliminable-abeqv 36828 eliminable-abeqab 36829 bj-sbeq 36862 bj-sbceqgALT 36863 bj-snsetex 36924 bj-clex 36992 eleq2w2ALT 37008 wl-cleq-0 37456 wl-cleq-1 37457 wl-cleq-2 37458 wl-cleq-3 37459 wl-cleq-4 37460 wl-cleq-5 37461 wl-cleq-6 37462 cover2 37682 releccnveq 38220 abbibw 42638 rp-fakeinunass 43477 intimag 43618 relexp0eq 43663 ntrneik4w 44062 undif3VD 44844 permaxext 44968 uzinico 45530 dvnmul 45914 dvnprodlem3 45919 sge00 46347 sge0resplit 46377 sge0fodjrnlem 46387 hspdifhsp 46587 smfresal 46759 mo0sn 48777 |
| Copyright terms: Public domain | W3C validator |