| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfcleq | Structured version Visualization version GIF version | ||
| Description: The defining characterization of class equality. It is proved, over Tarski's FOL, from the axiom of (set) extensionality (ax-ext 2703) and the definition of class equality (df-cleq 2723). Its forward implication is called "class extensionality". Remark: the proof uses axextb 2706 to prove also the hypothesis of df-cleq 2723 that is a degenerate instance, but it could be proved also from minimal propositional calculus and { ax-gen 1796, equid 2013 }. (Contributed by NM, 15-Sep-1993.) (Revised by BJ, 24-Jun-2019.) |
| Ref | Expression |
|---|---|
| dfcleq | ⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axextb 2706 | . 2 ⊢ (𝑦 = 𝑧 ↔ ∀𝑢(𝑢 ∈ 𝑦 ↔ 𝑢 ∈ 𝑧)) | |
| 2 | axextb 2706 | . 2 ⊢ (𝑡 = 𝑡 ↔ ∀𝑣(𝑣 ∈ 𝑡 ↔ 𝑣 ∈ 𝑡)) | |
| 3 | 1, 2 | df-cleq 2723 | 1 ⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∀wal 1539 = wceq 1541 ∈ wcel 2111 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2723 |
| This theorem is referenced by: cvjust 2725 ax9ALT 2726 eleq2w2 2727 eqriv 2728 eqrdv 2729 eqeq1d 2733 eqeq1dALT 2734 abbib 2800 eqabbw 2804 eleq2d 2817 eleq2dALT 2818 cleqh 2860 nfeqd 2905 cleqf 2923 rexeq 3288 raleqbidvvOLD 3301 rmoeq1 3377 eqv 3446 abv 3448 csbied 3881 dfss2 3915 eqss 3945 ssequn1 4131 vn0 4290 eq0 4295 eq0ALT 4296 ab0w 4324 ab0orv 4328 eq0rdv 4352 disj3 4399 undif4 4412 rzal 4454 ralf0 4459 intprg 4926 vnex 5247 inex1 5250 axprALT 5355 zfpair2 5366 sucel 6377 uniex2 7666 brtxpsd3 35930 hfext 36217 in-ax8 36258 onsuct0 36475 eliminable2a 36894 eliminable2b 36895 eliminable2c 36896 eliminable-veqab 36900 eliminable-abeqv 36901 eliminable-abeqab 36902 bj-sbeq 36935 bj-sbceqgALT 36936 bj-snsetex 36997 bj-clex 37065 eleq2w2ALT 37081 wl-cleq-0 37529 wl-cleq-1 37530 wl-cleq-2 37531 wl-cleq-3 37532 wl-cleq-4 37533 wl-cleq-5 37534 wl-cleq-6 37535 cover2 37755 releccnveq 38293 abbibw 42710 rp-fakeinunass 43548 intimag 43689 relexp0eq 43734 ntrneik4w 44133 undif3VD 44914 permaxext 45038 uzinico 45599 dvnmul 45981 dvnprodlem3 45986 sge00 46414 sge0resplit 46444 sge0fodjrnlem 46454 hspdifhsp 46654 smfresal 46826 mo0sn 48847 |
| Copyright terms: Public domain | W3C validator |