Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dfcleq | Structured version Visualization version GIF version |
Description: The defining characterization of class equality. It is proved, over Tarski's FOL, from the axiom of (set) extensionality (ax-ext 2709) and the definition of class equality (df-cleq 2730). Its forward implication is called "class extensionality". Remark: the proof uses axextb 2712 to prove also the hypothesis of df-cleq 2730 that is a degenerate instance, but it could be proved also from minimal propositional calculus and { ax-gen 1799, equid 2016 }. (Contributed by NM, 15-Sep-1993.) (Revised by BJ, 24-Jun-2019.) |
Ref | Expression |
---|---|
dfcleq | ⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axextb 2712 | . 2 ⊢ (𝑦 = 𝑧 ↔ ∀𝑢(𝑢 ∈ 𝑦 ↔ 𝑢 ∈ 𝑧)) | |
2 | axextb 2712 | . 2 ⊢ (𝑡 = 𝑡 ↔ ∀𝑣(𝑣 ∈ 𝑡 ↔ 𝑣 ∈ 𝑡)) | |
3 | 1, 2 | df-cleq 2730 | 1 ⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∀wal 1537 = wceq 1539 ∈ wcel 2108 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-cleq 2730 |
This theorem is referenced by: cvjust 2732 ax9ALT 2733 eleq2w2 2734 eqriv 2735 eqrdv 2736 eqeq1d 2740 eqeq1dALT 2741 abbi 2811 abeq2w 2816 eleq2d 2824 eleq2dALT 2825 cleqh 2862 nfeqd 2916 cleqf 2937 raleqbidvv 3329 eqv 3431 abv 3433 csbied 3866 dfss2 3903 eqss 3932 ssequn1 4110 vn0 4269 eq0 4274 eq0ALT 4275 ab0w 4304 ab0OLD 4306 ab0orv 4309 eq0rdv 4335 disj 4378 disj3 4384 undif4 4397 rzal 4436 ralf0 4441 intprg 4909 vnex 5233 inex1 5236 axprALT 5340 zfpair2 5348 sucel 6324 uniex2 7569 brtxpsd3 34125 hfext 34412 onsuct0 34557 eliminable2a 34971 eliminable2b 34972 eliminable2c 34973 eliminable-veqab 34977 eliminable-abeqv 34978 eliminable-abeqab 34979 bj-sbeq 35013 bj-sbceqgALT 35014 bj-snsetex 35080 eleq2w2ALT 35147 cover2 35799 releccnveq 36324 rp-fakeinunass 41020 intimag 41153 relexp0eq 41198 ntrneik4w 41599 undif3VD 42391 uzinico 42988 dvnmul 43374 dvnprodlem3 43379 sge00 43804 sge0resplit 43834 sge0fodjrnlem 43844 hspdifhsp 44044 smfresal 44209 mo0sn 46049 |
Copyright terms: Public domain | W3C validator |