| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfcleq | Structured version Visualization version GIF version | ||
| Description: The defining characterization of class equality. It is proved, over Tarski's FOL, from the axiom of (set) extensionality (ax-ext 2702) and the definition of class equality (df-cleq 2722). Its forward implication is called "class extensionality". Remark: the proof uses axextb 2705 to prove also the hypothesis of df-cleq 2722 that is a degenerate instance, but it could be proved also from minimal propositional calculus and { ax-gen 1795, equid 2012 }. (Contributed by NM, 15-Sep-1993.) (Revised by BJ, 24-Jun-2019.) |
| Ref | Expression |
|---|---|
| dfcleq | ⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axextb 2705 | . 2 ⊢ (𝑦 = 𝑧 ↔ ∀𝑢(𝑢 ∈ 𝑦 ↔ 𝑢 ∈ 𝑧)) | |
| 2 | axextb 2705 | . 2 ⊢ (𝑡 = 𝑡 ↔ ∀𝑣(𝑣 ∈ 𝑡 ↔ 𝑣 ∈ 𝑡)) | |
| 3 | 1, 2 | df-cleq 2722 | 1 ⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∀wal 1538 = wceq 1540 ∈ wcel 2109 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2722 |
| This theorem is referenced by: cvjust 2724 ax9ALT 2725 eleq2w2 2726 eqriv 2727 eqrdv 2728 eqeq1d 2732 eqeq1dALT 2733 abbib 2799 eqabbw 2803 eleq2d 2815 eleq2dALT 2816 cleqh 2858 nfeqd 2903 cleqf 2921 rexeq 3297 raleqbidvvOLD 3310 rmoeq1 3390 eqv 3460 abv 3462 csbied 3901 dfss2 3935 eqss 3965 ssequn1 4152 vn0 4311 eq0 4316 eq0ALT 4317 ab0w 4345 ab0orv 4349 eq0rdv 4373 disj 4416 disj3 4420 undif4 4433 rzal 4475 ralf0 4480 intprg 4948 vnex 5272 inex1 5275 axprALT 5380 zfpair2 5391 sucel 6411 uniex2 7717 brtxpsd3 35891 hfext 36178 in-ax8 36219 onsuct0 36436 eliminable2a 36855 eliminable2b 36856 eliminable2c 36857 eliminable-veqab 36861 eliminable-abeqv 36862 eliminable-abeqab 36863 bj-sbeq 36896 bj-sbceqgALT 36897 bj-snsetex 36958 bj-clex 37026 eleq2w2ALT 37042 wl-cleq-0 37490 wl-cleq-1 37491 wl-cleq-2 37492 wl-cleq-3 37493 wl-cleq-4 37494 wl-cleq-5 37495 wl-cleq-6 37496 cover2 37716 releccnveq 38254 abbibw 42672 rp-fakeinunass 43511 intimag 43652 relexp0eq 43697 ntrneik4w 44096 undif3VD 44878 permaxext 45002 uzinico 45564 dvnmul 45948 dvnprodlem3 45953 sge00 46381 sge0resplit 46411 sge0fodjrnlem 46421 hspdifhsp 46621 smfresal 46793 mo0sn 48808 |
| Copyright terms: Public domain | W3C validator |