![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfcleq | Structured version Visualization version GIF version |
Description: The defining characterization of class equality. It is proved, over Tarski's FOL, from the axiom of (set) extensionality (ax-ext 2704) and the definition of class equality (df-cleq 2725). Its forward implication is called "class extensionality". Remark: the proof uses axextb 2707 to prove also the hypothesis of df-cleq 2725 that is a degenerate instance, but it could be proved also from minimal propositional calculus and { ax-gen 1798, equid 2016 }. (Contributed by NM, 15-Sep-1993.) (Revised by BJ, 24-Jun-2019.) |
Ref | Expression |
---|---|
dfcleq | ⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axextb 2707 | . 2 ⊢ (𝑦 = 𝑧 ↔ ∀𝑢(𝑢 ∈ 𝑦 ↔ 𝑢 ∈ 𝑧)) | |
2 | axextb 2707 | . 2 ⊢ (𝑡 = 𝑡 ↔ ∀𝑣(𝑣 ∈ 𝑡 ↔ 𝑣 ∈ 𝑡)) | |
3 | 1, 2 | df-cleq 2725 | 1 ⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∀wal 1540 = wceq 1542 ∈ wcel 2107 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-ex 1783 df-cleq 2725 |
This theorem is referenced by: cvjust 2727 ax9ALT 2728 eleq2w2 2729 eqriv 2730 eqrdv 2731 eqeq1d 2735 eqeq1dALT 2736 abbib 2805 eqabbw 2810 eleq2d 2820 eleq2dALT 2821 cleqh 2864 nfeqd 2914 cleqf 2935 rexeq 3322 raleqbidvvOLD 3331 raleleq 3338 rmoeq1 3415 eqv 3484 abv 3486 csbied 3932 dfss2 3969 eqss 3998 ssequn1 4181 vn0 4339 eq0 4344 eq0ALT 4345 ab0w 4374 ab0OLD 4376 ab0orv 4379 eq0rdv 4405 disj 4448 disj3 4454 undif4 4467 rzal 4509 ralf0 4514 intprg 4986 vnex 5315 inex1 5318 axprALT 5421 zfpair2 5429 sucel 6439 uniex2 7728 brtxpsd3 34899 hfext 35186 onsuct0 35374 eliminable2a 35787 eliminable2b 35788 eliminable2c 35789 eliminable-veqab 35793 eliminable-abeqv 35794 eliminable-abeqab 35795 bj-sbeq 35829 bj-sbceqgALT 35830 bj-snsetex 35892 bj-clex 35960 eleq2w2ALT 35976 cover2 36631 releccnveq 37174 rp-fakeinunass 42314 intimag 42455 relexp0eq 42500 ntrneik4w 42899 undif3VD 43691 uzinico 44321 dvnmul 44707 dvnprodlem3 44712 sge00 45140 sge0resplit 45170 sge0fodjrnlem 45180 hspdifhsp 45380 smfresal 45552 mo0sn 47548 |
Copyright terms: Public domain | W3C validator |