Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dfcleq | Structured version Visualization version GIF version |
Description: The defining characterization of class equality. It is proved, over Tarski's FOL, from the axiom of (set) extensionality (ax-ext 2710) and the definition of class equality (df-cleq 2731). Its forward implication is called "class extensionality". Remark: the proof uses axextb 2713 to prove also the hypothesis of df-cleq 2731 that is a degenerate instance, but it could be proved also from minimal propositional calculus and { ax-gen 1798, equid 2016 }. (Contributed by NM, 15-Sep-1993.) (Revised by BJ, 24-Jun-2019.) |
Ref | Expression |
---|---|
dfcleq | ⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axextb 2713 | . 2 ⊢ (𝑦 = 𝑧 ↔ ∀𝑢(𝑢 ∈ 𝑦 ↔ 𝑢 ∈ 𝑧)) | |
2 | axextb 2713 | . 2 ⊢ (𝑡 = 𝑡 ↔ ∀𝑣(𝑣 ∈ 𝑡 ↔ 𝑣 ∈ 𝑡)) | |
3 | 1, 2 | df-cleq 2731 | 1 ⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∀wal 1537 = wceq 1539 ∈ wcel 2107 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-9 2117 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-cleq 2731 |
This theorem is referenced by: cvjust 2733 ax9ALT 2734 eleq2w2 2735 eqriv 2736 eqrdv 2737 eqeq1d 2741 eqeq1dALT 2742 abbi 2811 abeq2w 2816 eleq2d 2825 eleq2dALT 2826 cleqh 2863 nfeqd 2918 cleqf 2939 raleqbidvv 3339 eqv 3442 abv 3444 csbied 3871 dfss2 3908 eqss 3937 ssequn1 4115 vn0 4273 eq0 4278 eq0ALT 4279 ab0w 4308 ab0OLD 4310 ab0orv 4313 eq0rdv 4339 disj 4382 disj3 4388 undif4 4401 rzal 4440 ralf0 4445 intprg 4913 vnex 5239 inex1 5242 axprALT 5346 zfpair2 5354 sucel 6343 uniex2 7600 brtxpsd3 34207 hfext 34494 onsuct0 34639 eliminable2a 35053 eliminable2b 35054 eliminable2c 35055 eliminable-veqab 35059 eliminable-abeqv 35060 eliminable-abeqab 35061 bj-sbeq 35095 bj-sbceqgALT 35096 bj-snsetex 35162 eleq2w2ALT 35229 cover2 35881 releccnveq 36405 rp-fakeinunass 41129 intimag 41271 relexp0eq 41316 ntrneik4w 41717 undif3VD 42509 uzinico 43105 dvnmul 43491 dvnprodlem3 43496 sge00 43921 sge0resplit 43951 sge0fodjrnlem 43961 hspdifhsp 44161 smfresal 44333 mo0sn 46172 |
Copyright terms: Public domain | W3C validator |