![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfcleq | Structured version Visualization version GIF version |
Description: The defining characterization of class equality. It is proved, over Tarski's FOL, from the axiom of (set) extensionality (ax-ext 2771) and the definition of class equality (df-cleq 2790). Its forward implication is called "class extensionality". Remark: the proof uses axextb 2774 to prove also the hypothesis of df-cleq 2790 that is a degenerate instance, but it could be proved also from minimal propositional calculus and { ax-gen 1781, equid 2000 }. (Contributed by NM, 15-Sep-1993.) (Revised by BJ, 24-Jun-2019.) |
Ref | Expression |
---|---|
dfcleq | ⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axextb 2774 | . 2 ⊢ (𝑦 = 𝑧 ↔ ∀𝑢(𝑢 ∈ 𝑦 ↔ 𝑢 ∈ 𝑧)) | |
2 | axextb 2774 | . 2 ⊢ (𝑡 = 𝑡 ↔ ∀𝑣(𝑣 ∈ 𝑡 ↔ 𝑣 ∈ 𝑡)) | |
3 | 1, 2 | df-cleq 2790 | 1 ⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 207 ∀wal 1523 = wceq 1525 ∈ wcel 2083 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1781 ax-4 1795 ax-5 1892 ax-6 1951 ax-7 1996 ax-9 2093 ax-ext 2771 |
This theorem depends on definitions: df-bi 208 df-an 397 df-ex 1766 df-cleq 2790 |
This theorem is referenced by: cvjust 2792 ax9ALT 2793 eqriv 2794 eqrdv 2795 eqeq1d 2799 eqeq1dALT 2800 eleq2d 2870 eleq2dALT 2871 cleqh 2908 nfeqd 2959 cleqf 2980 eqv 3448 eqss 3910 ssequn1 4083 disj3 4323 undif4 4336 vnex 5116 inex1 5119 axprALT 5221 zfpair2 5229 sucel 6146 uniex2 7329 brtxpsd3 32968 hfext 33255 onsuct0 33400 bj-abbi 33698 eliminable2a 33759 eliminable2b 33760 eliminable2c 33761 bj-ax9 33793 bj-sbeq 33795 bj-sbceqgALT 33796 bj-snsetex 33901 bj-df-v 33966 cover2 34542 releccnveq 35072 rp-fakeinunass 39387 intimag 39507 relexp0eq 39552 ntrneik4w 39956 undif3VD 40776 uzinico 41399 dvnmul 41791 dvnprodlem3 41796 sge00 42222 sge0resplit 42252 sge0fodjrnlem 42262 hspdifhsp 42462 smfresal 42627 |
Copyright terms: Public domain | W3C validator |