| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfcleq | Structured version Visualization version GIF version | ||
| Description: The defining characterization of class equality. It is proved, over Tarski's FOL, from the axiom of (set) extensionality (ax-ext 2707) and the definition of class equality (df-cleq 2727). Its forward implication is called "class extensionality". Remark: the proof uses axextb 2710 to prove also the hypothesis of df-cleq 2727 that is a degenerate instance, but it could be proved also from minimal propositional calculus and { ax-gen 1795, equid 2011 }. (Contributed by NM, 15-Sep-1993.) (Revised by BJ, 24-Jun-2019.) |
| Ref | Expression |
|---|---|
| dfcleq | ⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axextb 2710 | . 2 ⊢ (𝑦 = 𝑧 ↔ ∀𝑢(𝑢 ∈ 𝑦 ↔ 𝑢 ∈ 𝑧)) | |
| 2 | axextb 2710 | . 2 ⊢ (𝑡 = 𝑡 ↔ ∀𝑣(𝑣 ∈ 𝑡 ↔ 𝑣 ∈ 𝑡)) | |
| 3 | 1, 2 | df-cleq 2727 | 1 ⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∀wal 1538 = wceq 1540 ∈ wcel 2108 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2727 |
| This theorem is referenced by: cvjust 2729 ax9ALT 2730 eleq2w2 2731 eqriv 2732 eqrdv 2733 eqeq1d 2737 eqeq1dALT 2738 abbib 2804 eqabbw 2808 eleq2d 2820 eleq2dALT 2821 cleqh 2864 nfeqd 2909 cleqf 2927 rexeq 3301 raleqbidvvOLD 3314 rmoeq1 3395 eqv 3469 abv 3471 csbied 3910 dfss2 3944 eqss 3974 ssequn1 4161 vn0 4320 eq0 4325 eq0ALT 4326 ab0w 4354 ab0orv 4358 eq0rdv 4382 disj 4425 disj3 4429 undif4 4442 rzal 4484 ralf0 4489 intprg 4957 vnex 5284 inex1 5287 axprALT 5392 zfpair2 5403 sucel 6428 uniex2 7732 brtxpsd3 35914 hfext 36201 in-ax8 36242 onsuct0 36459 eliminable2a 36878 eliminable2b 36879 eliminable2c 36880 eliminable-veqab 36884 eliminable-abeqv 36885 eliminable-abeqab 36886 bj-sbeq 36919 bj-sbceqgALT 36920 bj-snsetex 36981 bj-clex 37049 eleq2w2ALT 37065 wl-cleq-0 37513 wl-cleq-1 37514 wl-cleq-2 37515 wl-cleq-3 37516 wl-cleq-4 37517 wl-cleq-5 37518 wl-cleq-6 37519 cover2 37739 releccnveq 38276 abbibw 42700 rp-fakeinunass 43539 intimag 43680 relexp0eq 43725 ntrneik4w 44124 undif3VD 44906 permaxext 45030 uzinico 45588 dvnmul 45972 dvnprodlem3 45977 sge00 46405 sge0resplit 46435 sge0fodjrnlem 46445 hspdifhsp 46645 smfresal 46817 mo0sn 48794 |
| Copyright terms: Public domain | W3C validator |