![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfcleq | Structured version Visualization version GIF version |
Description: The defining characterization of class equality. It is proved, over Tarski's FOL, from the axiom of (set) extensionality (ax-ext 2711) and the definition of class equality (df-cleq 2732). Its forward implication is called "class extensionality". Remark: the proof uses axextb 2714 to prove also the hypothesis of df-cleq 2732 that is a degenerate instance, but it could be proved also from minimal propositional calculus and { ax-gen 1793, equid 2011 }. (Contributed by NM, 15-Sep-1993.) (Revised by BJ, 24-Jun-2019.) |
Ref | Expression |
---|---|
dfcleq | ⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axextb 2714 | . 2 ⊢ (𝑦 = 𝑧 ↔ ∀𝑢(𝑢 ∈ 𝑦 ↔ 𝑢 ∈ 𝑧)) | |
2 | axextb 2714 | . 2 ⊢ (𝑡 = 𝑡 ↔ ∀𝑣(𝑣 ∈ 𝑡 ↔ 𝑣 ∈ 𝑡)) | |
3 | 1, 2 | df-cleq 2732 | 1 ⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∀wal 1535 = wceq 1537 ∈ wcel 2108 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-cleq 2732 |
This theorem is referenced by: cvjust 2734 ax9ALT 2735 eleq2w2 2736 eqriv 2737 eqrdv 2738 eqeq1d 2742 eqeq1dALT 2743 abbib 2814 eqabbw 2818 eleq2d 2830 eleq2dALT 2831 cleqh 2874 nfeqd 2919 cleqf 2940 rexeq 3330 raleqbidvvOLD 3343 rmoeq1 3425 eqv 3498 abv 3500 csbied 3959 dfss2 3994 eqss 4024 ssequn1 4209 vn0 4368 eq0 4373 eq0ALT 4374 ab0w 4401 ab0OLD 4403 ab0orv 4406 eq0rdv 4430 disj 4473 disj3 4477 undif4 4490 rzal 4532 ralf0 4537 intprg 5005 vnex 5332 inex1 5335 axprALT 5440 zfpair2 5448 sucel 6469 uniex2 7773 brtxpsd3 35860 hfext 36147 in-ax8 36190 onsuct0 36407 eliminable2a 36826 eliminable2b 36827 eliminable2c 36828 eliminable-veqab 36832 eliminable-abeqv 36833 eliminable-abeqab 36834 bj-sbeq 36867 bj-sbceqgALT 36868 bj-snsetex 36929 bj-clex 36997 eleq2w2ALT 37013 cover2 37675 releccnveq 38214 abbibw 42632 rp-fakeinunass 43477 intimag 43618 relexp0eq 43663 ntrneik4w 44062 undif3VD 44853 uzinico 45478 dvnmul 45864 dvnprodlem3 45869 sge00 46297 sge0resplit 46327 sge0fodjrnlem 46337 hspdifhsp 46537 smfresal 46709 mo0sn 48547 |
Copyright terms: Public domain | W3C validator |