| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfcleq | Structured version Visualization version GIF version | ||
| Description: The defining characterization of class equality. It is proved, over Tarski's FOL, from the axiom of (set) extensionality (ax-ext 2701) and the definition of class equality (df-cleq 2721). Its forward implication is called "class extensionality". Remark: the proof uses axextb 2704 to prove also the hypothesis of df-cleq 2721 that is a degenerate instance, but it could be proved also from minimal propositional calculus and { ax-gen 1795, equid 2012 }. (Contributed by NM, 15-Sep-1993.) (Revised by BJ, 24-Jun-2019.) |
| Ref | Expression |
|---|---|
| dfcleq | ⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axextb 2704 | . 2 ⊢ (𝑦 = 𝑧 ↔ ∀𝑢(𝑢 ∈ 𝑦 ↔ 𝑢 ∈ 𝑧)) | |
| 2 | axextb 2704 | . 2 ⊢ (𝑡 = 𝑡 ↔ ∀𝑣(𝑣 ∈ 𝑡 ↔ 𝑣 ∈ 𝑡)) | |
| 3 | 1, 2 | df-cleq 2721 | 1 ⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∀wal 1538 = wceq 1540 ∈ wcel 2109 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 |
| This theorem is referenced by: cvjust 2723 ax9ALT 2724 eleq2w2 2725 eqriv 2726 eqrdv 2727 eqeq1d 2731 eqeq1dALT 2732 abbib 2798 eqabbw 2802 eleq2d 2814 eleq2dALT 2815 cleqh 2857 nfeqd 2902 cleqf 2920 rexeq 3286 raleqbidvvOLD 3299 rmoeq1 3378 eqv 3448 abv 3450 csbied 3889 dfss2 3923 eqss 3953 ssequn1 4139 vn0 4298 eq0 4303 eq0ALT 4304 ab0w 4332 ab0orv 4336 eq0rdv 4360 disj 4403 disj3 4407 undif4 4420 rzal 4462 ralf0 4467 intprg 4934 vnex 5256 inex1 5259 axprALT 5364 zfpair2 5375 sucel 6387 uniex2 7678 brtxpsd3 35889 hfext 36176 in-ax8 36217 onsuct0 36434 eliminable2a 36853 eliminable2b 36854 eliminable2c 36855 eliminable-veqab 36859 eliminable-abeqv 36860 eliminable-abeqab 36861 bj-sbeq 36894 bj-sbceqgALT 36895 bj-snsetex 36956 bj-clex 37024 eleq2w2ALT 37040 wl-cleq-0 37488 wl-cleq-1 37489 wl-cleq-2 37490 wl-cleq-3 37491 wl-cleq-4 37492 wl-cleq-5 37493 wl-cleq-6 37494 cover2 37714 releccnveq 38252 abbibw 42670 rp-fakeinunass 43508 intimag 43649 relexp0eq 43694 ntrneik4w 44093 undif3VD 44875 permaxext 44999 uzinico 45560 dvnmul 45944 dvnprodlem3 45949 sge00 46377 sge0resplit 46407 sge0fodjrnlem 46417 hspdifhsp 46617 smfresal 46789 mo0sn 48820 |
| Copyright terms: Public domain | W3C validator |