![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfcleq | Structured version Visualization version GIF version |
Description: The defining characterization of class equality. It is proved, over Tarski's FOL, from the axiom of (set) extensionality (ax-ext 2706) and the definition of class equality (df-cleq 2727). Its forward implication is called "class extensionality". Remark: the proof uses axextb 2709 to prove also the hypothesis of df-cleq 2727 that is a degenerate instance, but it could be proved also from minimal propositional calculus and { ax-gen 1792, equid 2009 }. (Contributed by NM, 15-Sep-1993.) (Revised by BJ, 24-Jun-2019.) |
Ref | Expression |
---|---|
dfcleq | ⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axextb 2709 | . 2 ⊢ (𝑦 = 𝑧 ↔ ∀𝑢(𝑢 ∈ 𝑦 ↔ 𝑢 ∈ 𝑧)) | |
2 | axextb 2709 | . 2 ⊢ (𝑡 = 𝑡 ↔ ∀𝑣(𝑣 ∈ 𝑡 ↔ 𝑣 ∈ 𝑡)) | |
3 | 1, 2 | df-cleq 2727 | 1 ⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∀wal 1535 = wceq 1537 ∈ wcel 2106 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1777 df-cleq 2727 |
This theorem is referenced by: cvjust 2729 ax9ALT 2730 eleq2w2 2731 eqriv 2732 eqrdv 2733 eqeq1d 2737 eqeq1dALT 2738 abbib 2809 eqabbw 2813 eleq2d 2825 eleq2dALT 2826 cleqh 2869 nfeqd 2914 cleqf 2932 rexeq 3320 raleqbidvvOLD 3333 rmoeq1 3414 eqv 3488 abv 3490 csbied 3946 dfss2 3981 eqss 4011 ssequn1 4196 vn0 4351 eq0 4356 eq0ALT 4357 ab0w 4385 ab0orv 4389 eq0rdv 4413 disj 4456 disj3 4460 undif4 4473 rzal 4515 ralf0 4520 intprg 4986 vnex 5320 inex1 5323 axprALT 5428 zfpair2 5439 sucel 6460 uniex2 7757 brtxpsd3 35878 hfext 36165 in-ax8 36207 onsuct0 36424 eliminable2a 36843 eliminable2b 36844 eliminable2c 36845 eliminable-veqab 36849 eliminable-abeqv 36850 eliminable-abeqab 36851 bj-sbeq 36884 bj-sbceqgALT 36885 bj-snsetex 36946 bj-clex 37014 eleq2w2ALT 37030 wl-cleq-0 37478 wl-cleq-1 37479 wl-cleq-2 37480 wl-cleq-3 37481 wl-cleq-4 37482 cover2 37702 releccnveq 38240 abbibw 42664 rp-fakeinunass 43505 intimag 43646 relexp0eq 43691 ntrneik4w 44090 undif3VD 44880 uzinico 45513 dvnmul 45899 dvnprodlem3 45904 sge00 46332 sge0resplit 46362 sge0fodjrnlem 46372 hspdifhsp 46572 smfresal 46744 mo0sn 48664 |
Copyright terms: Public domain | W3C validator |