| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfcleq | Structured version Visualization version GIF version | ||
| Description: The defining characterization of class equality. It is proved, over Tarski's FOL, from the axiom of (set) extensionality (ax-ext 2701) and the definition of class equality (df-cleq 2721). Its forward implication is called "class extensionality". Remark: the proof uses axextb 2704 to prove also the hypothesis of df-cleq 2721 that is a degenerate instance, but it could be proved also from minimal propositional calculus and { ax-gen 1795, equid 2012 }. (Contributed by NM, 15-Sep-1993.) (Revised by BJ, 24-Jun-2019.) |
| Ref | Expression |
|---|---|
| dfcleq | ⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axextb 2704 | . 2 ⊢ (𝑦 = 𝑧 ↔ ∀𝑢(𝑢 ∈ 𝑦 ↔ 𝑢 ∈ 𝑧)) | |
| 2 | axextb 2704 | . 2 ⊢ (𝑡 = 𝑡 ↔ ∀𝑣(𝑣 ∈ 𝑡 ↔ 𝑣 ∈ 𝑡)) | |
| 3 | 1, 2 | df-cleq 2721 | 1 ⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∀wal 1538 = wceq 1540 ∈ wcel 2109 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 |
| This theorem is referenced by: cvjust 2723 ax9ALT 2724 eleq2w2 2725 eqriv 2726 eqrdv 2727 eqeq1d 2731 eqeq1dALT 2732 abbib 2798 eqabbw 2802 eleq2d 2814 eleq2dALT 2815 cleqh 2857 nfeqd 2902 cleqf 2920 rexeq 3295 raleqbidvvOLD 3308 rmoeq1 3387 eqv 3457 abv 3459 csbied 3898 dfss2 3932 eqss 3962 ssequn1 4149 vn0 4308 eq0 4313 eq0ALT 4314 ab0w 4342 ab0orv 4346 eq0rdv 4370 disj 4413 disj3 4417 undif4 4430 rzal 4472 ralf0 4477 intprg 4945 vnex 5269 inex1 5272 axprALT 5377 zfpair2 5388 sucel 6408 uniex2 7714 brtxpsd3 35884 hfext 36171 in-ax8 36212 onsuct0 36429 eliminable2a 36848 eliminable2b 36849 eliminable2c 36850 eliminable-veqab 36854 eliminable-abeqv 36855 eliminable-abeqab 36856 bj-sbeq 36889 bj-sbceqgALT 36890 bj-snsetex 36951 bj-clex 37019 eleq2w2ALT 37035 wl-cleq-0 37483 wl-cleq-1 37484 wl-cleq-2 37485 wl-cleq-3 37486 wl-cleq-4 37487 wl-cleq-5 37488 wl-cleq-6 37489 cover2 37709 releccnveq 38247 abbibw 42665 rp-fakeinunass 43504 intimag 43645 relexp0eq 43690 ntrneik4w 44089 undif3VD 44871 permaxext 44995 uzinico 45557 dvnmul 45941 dvnprodlem3 45946 sge00 46374 sge0resplit 46404 sge0fodjrnlem 46414 hspdifhsp 46614 smfresal 46786 mo0sn 48804 |
| Copyright terms: Public domain | W3C validator |