Mathbox for Wolf Lammen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > wl-equsalcom | Structured version Visualization version GIF version |
Description: This simple equivalence eases substitution of one expression for the other. (Contributed by Wolf Lammen, 1-Sep-2018.) |
Ref | Expression |
---|---|
wl-equsalcom | ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ ∀𝑥(𝑦 = 𝑥 → 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equcom 2022 | . . 3 ⊢ (𝑥 = 𝑦 ↔ 𝑦 = 𝑥) | |
2 | 1 | imbi1i 349 | . 2 ⊢ ((𝑥 = 𝑦 → 𝜑) ↔ (𝑦 = 𝑥 → 𝜑)) |
3 | 2 | albii 1823 | 1 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ ∀𝑥(𝑦 = 𝑥 → 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 |
This theorem is referenced by: wl-equsal1i 35629 |
Copyright terms: Public domain | W3C validator |