Users' Mathboxes Mathbox for Wolf Lammen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wl-equsalcom Structured version   Visualization version   GIF version

Theorem wl-equsalcom 35701
Description: This simple equivalence eases substitution of one expression for the other. (Contributed by Wolf Lammen, 1-Sep-2018.)
Assertion
Ref Expression
wl-equsalcom (∀𝑥(𝑥 = 𝑦𝜑) ↔ ∀𝑥(𝑦 = 𝑥𝜑))

Proof of Theorem wl-equsalcom
StepHypRef Expression
1 equcom 2021 . . 3 (𝑥 = 𝑦𝑦 = 𝑥)
21imbi1i 350 . 2 ((𝑥 = 𝑦𝜑) ↔ (𝑦 = 𝑥𝜑))
32albii 1822 1 (∀𝑥(𝑥 = 𝑦𝜑) ↔ ∀𝑥(𝑦 = 𝑥𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1783
This theorem is referenced by:  wl-equsal1i  35702
  Copyright terms: Public domain W3C validator