| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > equcom | Structured version Visualization version GIF version | ||
| Description: Commutative law for equality. Equality is a symmetric relation. (Contributed by NM, 20-Aug-1993.) |
| Ref | Expression |
|---|---|
| equcom | ⊢ (𝑥 = 𝑦 ↔ 𝑦 = 𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | equcomi 2018 | . 2 ⊢ (𝑥 = 𝑦 → 𝑦 = 𝑥) | |
| 2 | equcomi 2018 | . 2 ⊢ (𝑦 = 𝑥 → 𝑥 = 𝑦) | |
| 3 | 1, 2 | impbii 209 | 1 ⊢ (𝑥 = 𝑦 ↔ 𝑦 = 𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 |
| This theorem is referenced by: equcomd 2020 dvelimhw 2345 sb8v 2353 sb8f 2354 nfeqf1 2379 eu1 2605 reu7 3686 reu8 3687 dfdif3OLD 4065 issn 4781 disjxun 5087 copsexgw 5428 copsexg 5429 dfid4 5510 dfid3 5512 opeliunxp 5681 opeliun2xp 5682 dmi 5860 elidinxp 5992 opabresid 5998 asymref2 6063 intirr 6064 cnvi 6088 coi1 6210 cnvso 6235 iotaval2 6452 brprcneu 6812 brprcneuALT 6813 dffv2 6917 fvn0ssdmfun 7007 f1oiso 7285 fvmpopr2d 7508 fsplit 8047 poxp2 8073 poxp3 8080 qsid 8705 mapsnend 8958 marypha2lem2 9320 fiinfg 9385 dfac5lem2 10015 dfac5lem3 10016 kmlem15 10056 brdom7disj 10422 suplem2pr 10944 wloglei 11649 fimaxre 12066 arch 12378 dflt2 13047 hashgt12el 14329 hashge2el2dif 14387 summo 15624 tosso 18323 opsrtoslem1 21990 mamulid 22356 mpomatmul 22361 mattpos1 22371 scmatscm 22428 1marepvmarrepid 22490 ist1-3 23264 unisngl 23442 fmid 23875 tgphaus 24032 dscopn 24488 iundisj2 25477 dvlip 25925 ply1divmo 26068 addsrid 27907 mulsrid 28052 disjabrex 32562 disjabrexf 32563 iundisj2f 32570 iundisj2fi 32779 grplsm0l 33368 ordtconnlem1 33937 dfdm5 35817 dfrn5 35818 dffun10 35956 elfuns 35957 dfiota3 35965 brimg 35979 dfrdg4 35995 nn0prpwlem 36366 fvineqsneu 37455 wl-equsalcom 37587 wl-sb9v 37593 matunitlindflem2 37667 ref5 38361 dfsucmap3 38486 pmapglb 39879 polval2N 40015 diclspsn 41303 sn-iotalem 42324 eq0rabdioph 42879 ontric3g 43625 undmrnresiss 43707 relopabVD 45003 icheq 47572 ichexmpl1 47579 pgnbgreunbgrlem4 48229 itsclquadeu 48888 oppcendc 49129 |
| Copyright terms: Public domain | W3C validator |