![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > equcom | Structured version Visualization version GIF version |
Description: Commutative law for equality. Equality is a symmetric relation. (Contributed by NM, 20-Aug-1993.) |
Ref | Expression |
---|---|
equcom | ⊢ (𝑥 = 𝑦 ↔ 𝑦 = 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equcomi 2016 | . 2 ⊢ (𝑥 = 𝑦 → 𝑦 = 𝑥) | |
2 | equcomi 2016 | . 2 ⊢ (𝑦 = 𝑥 → 𝑥 = 𝑦) | |
3 | 1, 2 | impbii 209 | 1 ⊢ (𝑥 = 𝑦 ↔ 𝑦 = 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 |
This theorem is referenced by: equcomd 2018 dvelimhw 2351 sb8v 2358 sb8f 2359 nfeqf1 2387 eu1 2613 reu7 3754 reu8 3755 dfdif3OLD 4141 issn 4857 iunidOLD 5084 disjxun 5164 copsexgw 5510 copsexg 5511 dfid4 5594 dfid3 5596 opeliunxp 5767 dmi 5946 elidinxp 6073 opabresid 6079 asymref2 6149 intirr 6150 cnvi 6173 coi1 6293 cnvso 6319 iotaval2 6541 iotavalOLD 6547 brprcneu 6910 brprcneuALT 6911 dffv2 7017 fvn0ssdmfun 7108 f1oiso 7387 fvmpopr2d 7612 fsplit 8158 poxp2 8184 poxp3 8191 qsid 8841 mapsnend 9101 marypha2lem2 9505 fiinfg 9568 dfac5lem2 10193 dfac5lem3 10194 kmlem15 10234 brdom7disj 10600 suplem2pr 11122 wloglei 11822 fimaxre 12239 arch 12550 dflt2 13210 hashgt12el 14471 hashge2el2dif 14529 summo 15765 tosso 18489 opsrtoslem1 22102 mamulid 22468 mpomatmul 22473 mattpos1 22483 scmatscm 22540 1marepvmarrepid 22602 ist1-3 23378 unisngl 23556 fmid 23989 tgphaus 24146 dscopn 24607 iundisj2 25603 dvlip 26052 ply1divmo 26195 addsrid 28015 mulsrid 28157 disjabrex 32604 disjabrexf 32605 iundisj2f 32612 iundisj2fi 32802 grplsm0l 33396 ordtconnlem1 33870 dfdm5 35736 dfrn5 35737 dffun10 35878 elfuns 35879 dfiota3 35887 brimg 35901 dfrdg4 35915 nn0prpwlem 36288 fvineqsneu 37377 wl-equsalcom 37497 wl-sb9v 37503 matunitlindflem2 37577 ref5 38269 pmapglb 39727 polval2N 39863 diclspsn 41151 sn-iotalem 42214 eq0rabdioph 42732 ontric3g 43484 undmrnresiss 43566 relopabVD 44872 icheq 47336 ichexmpl1 47343 opeliun2xp 48057 itsclquadeu 48511 |
Copyright terms: Public domain | W3C validator |