| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > equcom | Structured version Visualization version GIF version | ||
| Description: Commutative law for equality. Equality is a symmetric relation. (Contributed by NM, 20-Aug-1993.) |
| Ref | Expression |
|---|---|
| equcom | ⊢ (𝑥 = 𝑦 ↔ 𝑦 = 𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | equcomi 2017 | . 2 ⊢ (𝑥 = 𝑦 → 𝑦 = 𝑥) | |
| 2 | equcomi 2017 | . 2 ⊢ (𝑦 = 𝑥 → 𝑥 = 𝑦) | |
| 3 | 1, 2 | impbii 209 | 1 ⊢ (𝑥 = 𝑦 ↔ 𝑦 = 𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 |
| This theorem is referenced by: equcomd 2019 dvelimhw 2343 sb8v 2351 sb8f 2352 nfeqf1 2377 eu1 2603 reu7 3703 reu8 3704 dfdif3OLD 4081 issn 4796 iunidOLD 5025 disjxun 5105 copsexgw 5450 copsexg 5451 dfid4 5534 dfid3 5536 opeliunxp 5705 opeliun2xp 5706 dmi 5885 elidinxp 6015 opabresid 6021 asymref2 6090 intirr 6091 cnvi 6114 coi1 6235 cnvso 6261 iotaval2 6479 iotavalOLD 6485 brprcneu 6848 brprcneuALT 6849 dffv2 6956 fvn0ssdmfun 7046 f1oiso 7326 fvmpopr2d 7551 fsplit 8096 poxp2 8122 poxp3 8129 qsid 8754 mapsnend 9007 marypha2lem2 9387 fiinfg 9452 dfac5lem2 10077 dfac5lem3 10078 kmlem15 10118 brdom7disj 10484 suplem2pr 11006 wloglei 11710 fimaxre 12127 arch 12439 dflt2 13108 hashgt12el 14387 hashge2el2dif 14445 summo 15683 tosso 18378 opsrtoslem1 21962 mamulid 22328 mpomatmul 22333 mattpos1 22343 scmatscm 22400 1marepvmarrepid 22462 ist1-3 23236 unisngl 23414 fmid 23847 tgphaus 24004 dscopn 24461 iundisj2 25450 dvlip 25898 ply1divmo 26041 addsrid 27871 mulsrid 28016 disjabrex 32511 disjabrexf 32512 iundisj2f 32519 iundisj2fi 32720 grplsm0l 33374 ordtconnlem1 33914 dfdm5 35760 dfrn5 35761 dffun10 35902 elfuns 35903 dfiota3 35911 brimg 35925 dfrdg4 35939 nn0prpwlem 36310 fvineqsneu 37399 wl-equsalcom 37531 wl-sb9v 37537 matunitlindflem2 37611 ref5 38301 pmapglb 39764 polval2N 39900 diclspsn 41188 sn-iotalem 42209 eq0rabdioph 42764 ontric3g 43511 undmrnresiss 43593 relopabVD 44890 icheq 47463 ichexmpl1 47470 pgnbgreunbgrlem4 48109 itsclquadeu 48766 oppcendc 49007 |
| Copyright terms: Public domain | W3C validator |