![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > equcom | Structured version Visualization version GIF version |
Description: Commutative law for equality. Equality is a symmetric relation. (Contributed by NM, 20-Aug-1993.) |
Ref | Expression |
---|---|
equcom | ⊢ (𝑥 = 𝑦 ↔ 𝑦 = 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equcomi 2014 | . 2 ⊢ (𝑥 = 𝑦 → 𝑦 = 𝑥) | |
2 | equcomi 2014 | . 2 ⊢ (𝑦 = 𝑥 → 𝑥 = 𝑦) | |
3 | 1, 2 | impbii 209 | 1 ⊢ (𝑥 = 𝑦 ↔ 𝑦 = 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1777 |
This theorem is referenced by: equcomd 2016 dvelimhw 2346 sb8v 2353 sb8f 2354 nfeqf1 2382 eu1 2608 reu7 3741 reu8 3742 dfdif3OLD 4128 issn 4837 iunidOLD 5066 disjxun 5146 copsexgw 5501 copsexg 5502 dfid4 5584 dfid3 5586 opeliunxp 5756 dmi 5935 elidinxp 6064 opabresid 6070 asymref2 6140 intirr 6141 cnvi 6164 coi1 6284 cnvso 6310 iotaval2 6531 iotavalOLD 6537 brprcneu 6897 brprcneuALT 6898 dffv2 7004 fvn0ssdmfun 7094 f1oiso 7371 fvmpopr2d 7595 fsplit 8141 poxp2 8167 poxp3 8174 qsid 8822 mapsnend 9075 marypha2lem2 9474 fiinfg 9537 dfac5lem2 10162 dfac5lem3 10163 kmlem15 10203 brdom7disj 10569 suplem2pr 11091 wloglei 11793 fimaxre 12210 arch 12521 dflt2 13187 hashgt12el 14458 hashge2el2dif 14516 summo 15750 tosso 18477 opsrtoslem1 22097 mamulid 22463 mpomatmul 22468 mattpos1 22478 scmatscm 22535 1marepvmarrepid 22597 ist1-3 23373 unisngl 23551 fmid 23984 tgphaus 24141 dscopn 24602 iundisj2 25598 dvlip 26047 ply1divmo 26190 addsrid 28012 mulsrid 28154 disjabrex 32602 disjabrexf 32603 iundisj2f 32610 iundisj2fi 32805 grplsm0l 33411 ordtconnlem1 33885 dfdm5 35754 dfrn5 35755 dffun10 35896 elfuns 35897 dfiota3 35905 brimg 35919 dfrdg4 35933 nn0prpwlem 36305 fvineqsneu 37394 wl-equsalcom 37524 wl-sb9v 37530 matunitlindflem2 37604 ref5 38295 pmapglb 39753 polval2N 39889 diclspsn 41177 sn-iotalem 42239 eq0rabdioph 42764 ontric3g 43512 undmrnresiss 43594 relopabVD 44899 icheq 47387 ichexmpl1 47394 opeliun2xp 48178 itsclquadeu 48627 |
Copyright terms: Public domain | W3C validator |