Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > equcom | Structured version Visualization version GIF version |
Description: Commutative law for equality. Equality is a symmetric relation. (Contributed by NM, 20-Aug-1993.) |
Ref | Expression |
---|---|
equcom | ⊢ (𝑥 = 𝑦 ↔ 𝑦 = 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equcomi 2021 | . 2 ⊢ (𝑥 = 𝑦 → 𝑦 = 𝑥) | |
2 | equcomi 2021 | . 2 ⊢ (𝑦 = 𝑥 → 𝑥 = 𝑦) | |
3 | 1, 2 | impbii 208 | 1 ⊢ (𝑥 = 𝑦 ↔ 𝑦 = 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 |
This theorem is referenced by: equcomd 2023 dvelimhw 2344 sb8v 2351 sb8f 2352 nfeqf1 2380 eu1 2613 reu7 3668 reu8 3669 dfdif3 4050 issn 4764 iunid 4991 disjxun 5073 copsexgw 5405 copsexg 5406 dfid4 5491 dfid3 5493 opeliunxp 5655 dmi 5833 elidinxp 5954 opabresid 5960 opabresidOLD 5962 asymref2 6027 intirr 6028 cnvi 6050 coi1 6170 cnvso 6195 iotaval 6411 brprcneu 6773 brprcneuALT 6774 dffv2 6872 fvn0ssdmfun 6961 f1oiso 7231 fvmpopr2d 7443 fsplit 7966 qsid 8581 mapsnend 8835 marypha2lem2 9204 fiinfg 9267 dfac5lem2 9889 dfac5lem3 9890 kmlem15 9929 brdom7disj 10296 suplem2pr 10818 wloglei 11516 fimaxre 11928 arch 12239 dflt2 12891 hashgt12el 14146 hashge2el2dif 14203 summo 15438 tosso 18146 opsrtoslem1 21271 mamulid 21599 mpomatmul 21604 mattpos1 21614 scmatscm 21671 1marepvmarrepid 21733 ist1-3 22509 unisngl 22687 fmid 23120 tgphaus 23277 dscopn 23738 iundisj2 24722 dvlip 25166 ply1divmo 25309 disjabrex 30930 disjabrexf 30931 iundisj2f 30938 iundisj2fi 31127 grplsm0l 31600 ordtconnlem1 31883 dfdm5 33756 dfrn5 33757 poxp2 33799 poxp3 33805 xpord3ind 33809 addsid1 34136 dffun10 34225 elfuns 34226 dfiota3 34234 brimg 34248 dfrdg4 34262 nn0prpwlem 34520 fvineqsneu 35591 wl-equsalcom 35710 matunitlindflem2 35783 pmapglb 37791 polval2N 37927 diclspsn 39215 sn-iotalem 40196 iotavallem 40199 eq0rabdioph 40605 ontric3g 41136 undmrnresiss 41219 relopabVD 42528 icheq 44925 ichexmpl1 44932 opeliun2xp 45679 itsclquadeu 46134 |
Copyright terms: Public domain | W3C validator |