![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > equcom | Structured version Visualization version GIF version |
Description: Commutative law for equality. Equality is a symmetric relation. (Contributed by NM, 20-Aug-1993.) |
Ref | Expression |
---|---|
equcom | ⊢ (𝑥 = 𝑦 ↔ 𝑦 = 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equcomi 2018 | . 2 ⊢ (𝑥 = 𝑦 → 𝑦 = 𝑥) | |
2 | equcomi 2018 | . 2 ⊢ (𝑦 = 𝑥 → 𝑥 = 𝑦) | |
3 | 1, 2 | impbii 208 | 1 ⊢ (𝑥 = 𝑦 ↔ 𝑦 = 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 |
This theorem depends on definitions: df-bi 206 df-an 395 df-ex 1780 |
This theorem is referenced by: equcomd 2020 dvelimhw 2339 sb8v 2346 sb8f 2347 nfeqf1 2376 eu1 2604 reu7 3729 reu8 3730 dfdif3 4115 issn 4834 iunidOLD 5065 disjxun 5147 copsexgw 5491 copsexg 5492 dfid4 5576 dfid3 5578 opeliunxp 5744 dmi 5922 elidinxp 6044 opabresid 6050 asymref2 6119 intirr 6120 cnvi 6142 coi1 6262 cnvso 6288 iotaval2 6512 iotavalOLD 6518 brprcneu 6882 brprcneuALT 6883 dffv2 6987 fvn0ssdmfun 7077 f1oiso 7352 fvmpopr2d 7573 fsplit 8107 poxp2 8133 poxp3 8140 qsid 8781 mapsnend 9040 marypha2lem2 9435 fiinfg 9498 dfac5lem2 10123 dfac5lem3 10124 kmlem15 10163 brdom7disj 10530 suplem2pr 11052 wloglei 11752 fimaxre 12164 arch 12475 dflt2 13133 hashgt12el 14388 hashge2el2dif 14447 summo 15669 tosso 18378 opsrtoslem1 21837 mamulid 22165 mpomatmul 22170 mattpos1 22180 scmatscm 22237 1marepvmarrepid 22299 ist1-3 23075 unisngl 23253 fmid 23686 tgphaus 23843 dscopn 24304 iundisj2 25300 dvlip 25744 ply1divmo 25887 addsrid 27684 mulsrid 27806 disjabrex 32078 disjabrexf 32079 iundisj2f 32086 iundisj2fi 32273 grplsm0l 32785 ordtconnlem1 33200 dfdm5 35046 dfrn5 35047 dffun10 35188 elfuns 35189 dfiota3 35197 brimg 35211 dfrdg4 35225 nn0prpwlem 35512 fvineqsneu 36597 wl-equsalcom 36716 matunitlindflem2 36790 ref5 37487 pmapglb 38946 polval2N 39082 diclspsn 40370 sn-iotalem 41346 eq0rabdioph 41818 ontric3g 42577 undmrnresiss 42659 relopabVD 43966 icheq 46430 ichexmpl1 46437 opeliun2xp 47098 itsclquadeu 47552 |
Copyright terms: Public domain | W3C validator |