| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > equcom | Structured version Visualization version GIF version | ||
| Description: Commutative law for equality. Equality is a symmetric relation. (Contributed by NM, 20-Aug-1993.) |
| Ref | Expression |
|---|---|
| equcom | ⊢ (𝑥 = 𝑦 ↔ 𝑦 = 𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | equcomi 2017 | . 2 ⊢ (𝑥 = 𝑦 → 𝑦 = 𝑥) | |
| 2 | equcomi 2017 | . 2 ⊢ (𝑦 = 𝑥 → 𝑥 = 𝑦) | |
| 3 | 1, 2 | impbii 209 | 1 ⊢ (𝑥 = 𝑦 ↔ 𝑦 = 𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 |
| This theorem is referenced by: equcomd 2019 dvelimhw 2343 sb8v 2351 sb8f 2352 nfeqf1 2377 eu1 2603 reu7 3700 reu8 3701 dfdif3OLD 4077 issn 4792 iunidOLD 5020 disjxun 5100 copsexgw 5445 copsexg 5446 dfid4 5527 dfid3 5529 opeliunxp 5698 opeliun2xp 5699 dmi 5875 elidinxp 6004 opabresid 6010 asymref2 6078 intirr 6079 cnvi 6102 coi1 6223 cnvso 6249 iotaval2 6467 iotavalOLD 6473 brprcneu 6830 brprcneuALT 6831 dffv2 6938 fvn0ssdmfun 7028 f1oiso 7308 fvmpopr2d 7531 fsplit 8073 poxp2 8099 poxp3 8106 qsid 8731 mapsnend 8984 marypha2lem2 9363 fiinfg 9428 dfac5lem2 10053 dfac5lem3 10054 kmlem15 10094 brdom7disj 10460 suplem2pr 10982 wloglei 11686 fimaxre 12103 arch 12415 dflt2 13084 hashgt12el 14363 hashge2el2dif 14421 summo 15659 tosso 18358 opsrtoslem1 21995 mamulid 22361 mpomatmul 22366 mattpos1 22376 scmatscm 22433 1marepvmarrepid 22495 ist1-3 23269 unisngl 23447 fmid 23880 tgphaus 24037 dscopn 24494 iundisj2 25483 dvlip 25931 ply1divmo 26074 addsrid 27911 mulsrid 28056 disjabrex 32561 disjabrexf 32562 iundisj2f 32569 iundisj2fi 32770 grplsm0l 33367 ordtconnlem1 33907 dfdm5 35753 dfrn5 35754 dffun10 35895 elfuns 35896 dfiota3 35904 brimg 35918 dfrdg4 35932 nn0prpwlem 36303 fvineqsneu 37392 wl-equsalcom 37524 wl-sb9v 37530 matunitlindflem2 37604 ref5 38294 pmapglb 39757 polval2N 39893 diclspsn 41181 sn-iotalem 42202 eq0rabdioph 42757 ontric3g 43504 undmrnresiss 43586 relopabVD 44883 icheq 47456 ichexmpl1 47463 pgnbgreunbgrlem4 48102 itsclquadeu 48759 oppcendc 49000 |
| Copyright terms: Public domain | W3C validator |