| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > equcom | Structured version Visualization version GIF version | ||
| Description: Commutative law for equality. Equality is a symmetric relation. (Contributed by NM, 20-Aug-1993.) |
| Ref | Expression |
|---|---|
| equcom | ⊢ (𝑥 = 𝑦 ↔ 𝑦 = 𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | equcomi 2017 | . 2 ⊢ (𝑥 = 𝑦 → 𝑦 = 𝑥) | |
| 2 | equcomi 2017 | . 2 ⊢ (𝑦 = 𝑥 → 𝑥 = 𝑦) | |
| 3 | 1, 2 | impbii 209 | 1 ⊢ (𝑥 = 𝑦 ↔ 𝑦 = 𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 |
| This theorem is referenced by: equcomd 2019 dvelimhw 2347 sb8v 2355 sb8f 2356 nfeqf1 2384 eu1 2610 reu7 3720 reu8 3721 dfdif3OLD 4098 issn 4813 iunidOLD 5042 disjxun 5122 copsexgw 5470 copsexg 5471 dfid4 5554 dfid3 5556 opeliunxp 5726 opeliun2xp 5727 dmi 5906 elidinxp 6036 opabresid 6042 asymref2 6111 intirr 6112 cnvi 6135 coi1 6256 cnvso 6282 iotaval2 6504 iotavalOLD 6510 brprcneu 6871 brprcneuALT 6872 dffv2 6979 fvn0ssdmfun 7069 f1oiso 7349 fvmpopr2d 7574 fsplit 8121 poxp2 8147 poxp3 8154 qsid 8802 mapsnend 9055 marypha2lem2 9453 fiinfg 9518 dfac5lem2 10143 dfac5lem3 10144 kmlem15 10184 brdom7disj 10550 suplem2pr 11072 wloglei 11774 fimaxre 12191 arch 12503 dflt2 13169 hashgt12el 14445 hashge2el2dif 14503 summo 15738 tosso 18434 opsrtoslem1 22018 mamulid 22384 mpomatmul 22389 mattpos1 22399 scmatscm 22456 1marepvmarrepid 22518 ist1-3 23292 unisngl 23470 fmid 23903 tgphaus 24060 dscopn 24517 iundisj2 25507 dvlip 25955 ply1divmo 26098 addsrid 27928 mulsrid 28073 disjabrex 32568 disjabrexf 32569 iundisj2f 32576 iundisj2fi 32779 grplsm0l 33423 ordtconnlem1 33960 dfdm5 35795 dfrn5 35796 dffun10 35937 elfuns 35938 dfiota3 35946 brimg 35960 dfrdg4 35974 nn0prpwlem 36345 fvineqsneu 37434 wl-equsalcom 37566 wl-sb9v 37572 matunitlindflem2 37646 ref5 38336 pmapglb 39794 polval2N 39930 diclspsn 41218 sn-iotalem 42239 eq0rabdioph 42774 ontric3g 43521 undmrnresiss 43603 relopabVD 44900 icheq 47456 ichexmpl1 47463 itsclquadeu 48737 oppcendc 48973 |
| Copyright terms: Public domain | W3C validator |