| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > equcom | Structured version Visualization version GIF version | ||
| Description: Commutative law for equality. Equality is a symmetric relation. (Contributed by NM, 20-Aug-1993.) |
| Ref | Expression |
|---|---|
| equcom | ⊢ (𝑥 = 𝑦 ↔ 𝑦 = 𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | equcomi 2015 | . 2 ⊢ (𝑥 = 𝑦 → 𝑦 = 𝑥) | |
| 2 | equcomi 2015 | . 2 ⊢ (𝑦 = 𝑥 → 𝑥 = 𝑦) | |
| 3 | 1, 2 | impbii 209 | 1 ⊢ (𝑥 = 𝑦 ↔ 𝑦 = 𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 |
| This theorem is referenced by: equcomd 2017 dvelimhw 2346 sb8v 2354 sb8f 2355 nfeqf1 2383 eu1 2609 reu7 3737 reu8 3738 dfdif3OLD 4117 issn 4831 iunidOLD 5060 disjxun 5140 copsexgw 5494 copsexg 5495 dfid4 5578 dfid3 5580 opeliunxp 5751 opeliun2xp 5752 dmi 5931 elidinxp 6061 opabresid 6067 asymref2 6136 intirr 6137 cnvi 6160 coi1 6281 cnvso 6307 iotaval2 6528 iotavalOLD 6534 brprcneu 6895 brprcneuALT 6896 dffv2 7003 fvn0ssdmfun 7093 f1oiso 7372 fvmpopr2d 7596 fsplit 8143 poxp2 8169 poxp3 8176 qsid 8824 mapsnend 9077 marypha2lem2 9477 fiinfg 9540 dfac5lem2 10165 dfac5lem3 10166 kmlem15 10206 brdom7disj 10572 suplem2pr 11094 wloglei 11796 fimaxre 12213 arch 12525 dflt2 13191 hashgt12el 14462 hashge2el2dif 14520 summo 15754 tosso 18465 opsrtoslem1 22080 mamulid 22448 mpomatmul 22453 mattpos1 22463 scmatscm 22520 1marepvmarrepid 22582 ist1-3 23358 unisngl 23536 fmid 23969 tgphaus 24126 dscopn 24587 iundisj2 25585 dvlip 26033 ply1divmo 26176 addsrid 27998 mulsrid 28140 disjabrex 32596 disjabrexf 32597 iundisj2f 32604 iundisj2fi 32800 grplsm0l 33432 ordtconnlem1 33924 dfdm5 35774 dfrn5 35775 dffun10 35916 elfuns 35917 dfiota3 35925 brimg 35939 dfrdg4 35953 nn0prpwlem 36324 fvineqsneu 37413 wl-equsalcom 37545 wl-sb9v 37551 matunitlindflem2 37625 ref5 38315 pmapglb 39773 polval2N 39909 diclspsn 41197 sn-iotalem 42261 eq0rabdioph 42792 ontric3g 43540 undmrnresiss 43622 relopabVD 44926 icheq 47454 ichexmpl1 47461 itsclquadeu 48703 oppcendc 48921 |
| Copyright terms: Public domain | W3C validator |