| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > equcom | Structured version Visualization version GIF version | ||
| Description: Commutative law for equality. Equality is a symmetric relation. (Contributed by NM, 20-Aug-1993.) |
| Ref | Expression |
|---|---|
| equcom | ⊢ (𝑥 = 𝑦 ↔ 𝑦 = 𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | equcomi 2017 | . 2 ⊢ (𝑥 = 𝑦 → 𝑦 = 𝑥) | |
| 2 | equcomi 2017 | . 2 ⊢ (𝑦 = 𝑥 → 𝑥 = 𝑦) | |
| 3 | 1, 2 | impbii 209 | 1 ⊢ (𝑥 = 𝑦 ↔ 𝑦 = 𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 |
| This theorem is referenced by: equcomd 2019 dvelimhw 2343 sb8v 2351 sb8f 2352 nfeqf1 2377 eu1 2603 reu7 3692 reu8 3693 dfdif3OLD 4069 issn 4783 iunidOLD 5010 disjxun 5090 copsexgw 5433 copsexg 5434 dfid4 5515 dfid3 5517 opeliunxp 5686 opeliun2xp 5687 dmi 5864 elidinxp 5995 opabresid 6001 asymref2 6066 intirr 6067 cnvi 6090 coi1 6211 cnvso 6236 iotaval2 6453 brprcneu 6812 brprcneuALT 6813 dffv2 6918 fvn0ssdmfun 7008 f1oiso 7288 fvmpopr2d 7511 fsplit 8050 poxp2 8076 poxp3 8083 qsid 8708 mapsnend 8961 marypha2lem2 9326 fiinfg 9391 dfac5lem2 10018 dfac5lem3 10019 kmlem15 10059 brdom7disj 10425 suplem2pr 10947 wloglei 11652 fimaxre 12069 arch 12381 dflt2 13050 hashgt12el 14329 hashge2el2dif 14387 summo 15624 tosso 18323 opsrtoslem1 21960 mamulid 22326 mpomatmul 22331 mattpos1 22341 scmatscm 22398 1marepvmarrepid 22460 ist1-3 23234 unisngl 23412 fmid 23845 tgphaus 24002 dscopn 24459 iundisj2 25448 dvlip 25896 ply1divmo 26039 addsrid 27876 mulsrid 28021 disjabrex 32526 disjabrexf 32527 iundisj2f 32534 iundisj2fi 32740 grplsm0l 33340 ordtconnlem1 33891 dfdm5 35750 dfrn5 35751 dffun10 35892 elfuns 35893 dfiota3 35901 brimg 35915 dfrdg4 35929 nn0prpwlem 36300 fvineqsneu 37389 wl-equsalcom 37521 wl-sb9v 37527 matunitlindflem2 37601 ref5 38291 pmapglb 39753 polval2N 39889 diclspsn 41177 sn-iotalem 42198 eq0rabdioph 42753 ontric3g 43499 undmrnresiss 43581 relopabVD 44878 icheq 47450 ichexmpl1 47457 pgnbgreunbgrlem4 48107 itsclquadeu 48766 oppcendc 49007 |
| Copyright terms: Public domain | W3C validator |