![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > equcom | Structured version Visualization version GIF version |
Description: Commutative law for equality. Equality is a symmetric relation. (Contributed by NM, 20-Aug-1993.) |
Ref | Expression |
---|---|
equcom | ⊢ (𝑥 = 𝑦 ↔ 𝑦 = 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equcomi 2021 | . 2 ⊢ (𝑥 = 𝑦 → 𝑦 = 𝑥) | |
2 | equcomi 2021 | . 2 ⊢ (𝑦 = 𝑥 → 𝑥 = 𝑦) | |
3 | 1, 2 | impbii 208 | 1 ⊢ (𝑥 = 𝑦 ↔ 𝑦 = 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 |
This theorem depends on definitions: df-bi 206 df-an 398 df-ex 1783 |
This theorem is referenced by: equcomd 2023 dvelimhw 2342 sb8v 2349 sb8f 2350 nfeqf1 2379 eu1 2607 reu7 3729 reu8 3730 dfdif3 4115 issn 4834 iunidOLD 5065 disjxun 5147 copsexgw 5491 copsexg 5492 dfid4 5576 dfid3 5578 opeliunxp 5744 dmi 5922 elidinxp 6044 opabresid 6050 asymref2 6119 intirr 6120 cnvi 6142 coi1 6262 cnvso 6288 iotaval2 6512 iotavalOLD 6518 brprcneu 6882 brprcneuALT 6883 dffv2 6987 fvn0ssdmfun 7077 f1oiso 7348 fvmpopr2d 7569 fsplit 8103 poxp2 8129 poxp3 8136 qsid 8777 mapsnend 9036 marypha2lem2 9431 fiinfg 9494 dfac5lem2 10119 dfac5lem3 10120 kmlem15 10159 brdom7disj 10526 suplem2pr 11048 wloglei 11746 fimaxre 12158 arch 12469 dflt2 13127 hashgt12el 14382 hashge2el2dif 14441 summo 15663 tosso 18372 opsrtoslem1 21616 mamulid 21943 mpomatmul 21948 mattpos1 21958 scmatscm 22015 1marepvmarrepid 22077 ist1-3 22853 unisngl 23031 fmid 23464 tgphaus 23621 dscopn 24082 iundisj2 25066 dvlip 25510 ply1divmo 25653 addsrid 27450 mulsrid 27572 disjabrex 31844 disjabrexf 31845 iundisj2f 31852 iundisj2fi 32039 grplsm0l 32544 ordtconnlem1 32935 dfdm5 34775 dfrn5 34776 dffun10 34917 elfuns 34918 dfiota3 34926 brimg 34940 dfrdg4 34954 nn0prpwlem 35255 fvineqsneu 36340 wl-equsalcom 36459 matunitlindflem2 36533 ref5 37230 pmapglb 38689 polval2N 38825 diclspsn 40113 sn-iotalem 41086 eq0rabdioph 41562 ontric3g 42321 undmrnresiss 42403 relopabVD 43710 icheq 46178 ichexmpl1 46185 opeliun2xp 47056 itsclquadeu 47511 |
Copyright terms: Public domain | W3C validator |