Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > equcom | Structured version Visualization version GIF version |
Description: Commutative law for equality. Equality is a symmetric relation. (Contributed by NM, 20-Aug-1993.) |
Ref | Expression |
---|---|
equcom | ⊢ (𝑥 = 𝑦 ↔ 𝑦 = 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equcomi 2021 | . 2 ⊢ (𝑥 = 𝑦 → 𝑦 = 𝑥) | |
2 | equcomi 2021 | . 2 ⊢ (𝑦 = 𝑥 → 𝑥 = 𝑦) | |
3 | 1, 2 | impbii 208 | 1 ⊢ (𝑥 = 𝑦 ↔ 𝑦 = 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 |
This theorem is referenced by: equcomd 2023 dvelimhw 2345 nfeqf1 2379 eu1 2612 reu7 3662 reu8 3663 dfdif3 4045 issn 4760 iunid 4986 disjxun 5068 copsexgw 5398 copsexg 5399 dfid4 5481 dfid3 5483 opeliunxp 5645 dmi 5819 elidinxp 5940 opabresid 5946 opabresidOLD 5948 asymref2 6011 intirr 6012 cnvi 6034 coi1 6155 cnvso 6180 iotaval 6392 brprcneu 6747 fvprc 6748 dffv2 6845 fvn0ssdmfun 6934 f1oiso 7202 fvmpopr2d 7412 fsplit 7928 qsid 8530 mapsnend 8780 marypha2lem2 9125 fiinfg 9188 dfac5lem2 9811 dfac5lem3 9812 kmlem15 9851 brdom7disj 10218 suplem2pr 10740 wloglei 11437 fimaxre 11849 arch 12160 dflt2 12811 hashgt12el 14065 hashge2el2dif 14122 summo 15357 tosso 18052 opsrtoslem1 21172 mamulid 21498 mpomatmul 21503 mattpos1 21513 scmatscm 21570 1marepvmarrepid 21632 ist1-3 22408 unisngl 22586 fmid 23019 tgphaus 23176 dscopn 23635 iundisj2 24618 dvlip 25062 ply1divmo 25205 disjabrex 30822 disjabrexf 30823 iundisj2f 30830 iundisj2fi 31020 grplsm0l 31493 ordtconnlem1 31776 dfdm5 33653 dfrn5 33654 poxp2 33717 poxp3 33723 xpord3ind 33727 addsid1 34054 dffun10 34143 elfuns 34144 dfiota3 34152 brimg 34166 dfrdg4 34180 nn0prpwlem 34438 fvineqsneu 35509 wl-equsalcom 35628 matunitlindflem2 35701 pmapglb 37711 polval2N 37847 diclspsn 39135 sn-iotalem 40117 sn-iotaval 40119 eq0rabdioph 40514 ontric3g 41027 undmrnresiss 41101 relopabVD 42410 icheq 44802 ichexmpl1 44809 opeliun2xp 45556 itsclquadeu 46011 |
Copyright terms: Public domain | W3C validator |