Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > equcom | Structured version Visualization version GIF version |
Description: Commutative law for equality. Equality is a symmetric relation. (Contributed by NM, 20-Aug-1993.) |
Ref | Expression |
---|---|
equcom | ⊢ (𝑥 = 𝑦 ↔ 𝑦 = 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equcomi 2024 | . 2 ⊢ (𝑥 = 𝑦 → 𝑦 = 𝑥) | |
2 | equcomi 2024 | . 2 ⊢ (𝑦 = 𝑥 → 𝑥 = 𝑦) | |
3 | 1, 2 | impbii 212 | 1 ⊢ (𝑥 = 𝑦 ↔ 𝑦 = 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 |
This theorem depends on definitions: df-bi 210 df-an 400 df-ex 1782 |
This theorem is referenced by: equcomd 2026 equsb3rOLD 2108 dvelimhw 2355 nfeqf1 2386 eu1 2630 reu7 3648 reu8 3649 dfdif3 4022 issn 4723 iunid 4952 disjxun 5033 copsexgw 5352 copsexg 5353 dfid4 5434 dfid3 5435 opeliunxp 5592 dmi 5766 elidinxp 5887 opabresid 5893 opabresidOLD 5895 asymref2 5953 intirr 5954 cnvi 5976 coi1 6096 cnvso 6121 iotaval 6313 brprcneu 6653 fvprc 6654 dffv2 6751 fvn0ssdmfun 6838 f1oiso 7103 fvmpopr2d 7311 fsplit 7822 qsid 8378 mapsnend 8612 marypha2lem2 8938 fiinfg 9001 dfac5lem2 9589 dfac5lem3 9590 kmlem15 9629 brdom7disj 9996 suplem2pr 10518 wloglei 11215 fimaxre 11627 arch 11936 dflt2 12587 hashgt12el 13838 hashge2el2dif 13895 summo 15127 tosso 17717 opsrtoslem1 20820 mamulid 21146 mpomatmul 21151 mattpos1 21161 scmatscm 21218 1marepvmarrepid 21280 ist1-3 22054 unisngl 22232 fmid 22665 tgphaus 22822 dscopn 23280 iundisj2 24254 dvlip 24697 ply1divmo 24840 disjabrex 30448 disjabrexf 30449 iundisj2f 30456 iundisj2fi 30646 grplsm0l 31116 ordtconnlem1 31399 dfdm5 33267 dfrn5 33268 poxp2 33349 poxp3 33355 xpord3ind 33359 addsid1 33702 dffun10 33791 elfuns 33792 dfiota3 33800 brimg 33814 dfrdg4 33828 nn0prpwlem 34086 fvineqsneu 35134 wl-equsalcom 35253 wl-dfralflem 35309 matunitlindflem2 35360 pmapglb 37372 polval2N 37508 diclspsn 38796 eq0rabdioph 40118 ontric3g 40631 undmrnresiss 40705 relopabVD 42008 icheq 44375 ichexmpl1 44382 opeliun2xp 45129 itsclquadeu 45584 |
Copyright terms: Public domain | W3C validator |