Users' Mathboxes Mathbox for Wolf Lammen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wl-equsal1t Structured version   Visualization version   GIF version

Theorem wl-equsal1t 35700
Description: The expression 𝑥 = 𝑦 in antecedent position plays an important role in predicate logic, namely in implicit substitution. However, occasionally it is irrelevant, and can safely be dropped. A sufficient condition for this is when 𝑥 (or 𝑦 or both) is not free in 𝜑.

This theorem is more fundamental than equsal 2417, spimt 2386 or sbft 2262, to which it is related. (Contributed by Wolf Lammen, 19-Aug-2018.)

Assertion
Ref Expression
wl-equsal1t (Ⅎ𝑥𝜑 → (∀𝑥(𝑥 = 𝑦𝜑) ↔ 𝜑))

Proof of Theorem wl-equsal1t
StepHypRef Expression
1 nfnf1 2151 . 2 𝑥𝑥𝜑
2 id 22 . 2 (Ⅎ𝑥𝜑 → Ⅎ𝑥𝜑)
3 biid 260 . . 3 (𝜑𝜑)
432a1i 12 . 2 (Ⅎ𝑥𝜑 → (𝑥 = 𝑦 → (𝜑𝜑)))
51, 2, 4wl-equsald 35698 1 (Ⅎ𝑥𝜑 → (∀𝑥(𝑥 = 𝑦𝜑) ↔ 𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1537  wnf 1786
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-10 2137  ax-12 2171  ax-13 2372
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-ex 1783  df-nf 1787
This theorem is referenced by:  wl-equsal1i  35702
  Copyright terms: Public domain W3C validator