Users' Mathboxes Mathbox for Wolf Lammen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wl-ifp-ncond2 Structured version   Visualization version   GIF version

Theorem wl-ifp-ncond2 35636
Description: If one case of an if- condition is false, the other automatically follows. (Contributed by Wolf Lammen, 21-Jul-2024.)
Assertion
Ref Expression
wl-ifp-ncond2 𝜒 → (if-(𝜑, 𝜓, 𝜒) ↔ (𝜑𝜓)))

Proof of Theorem wl-ifp-ncond2
StepHypRef Expression
1 wl-ifp-ncond1 35635 . 2 𝜒 → (if-(¬ 𝜑, 𝜒, 𝜓) ↔ (¬ ¬ 𝜑𝜓)))
2 ifpn 1071 . 2 (if-(𝜑, 𝜓, 𝜒) ↔ if-(¬ 𝜑, 𝜒, 𝜓))
3 notnotb 315 . . 3 (𝜑 ↔ ¬ ¬ 𝜑)
43anbi1i 624 . 2 ((𝜑𝜓) ↔ (¬ ¬ 𝜑𝜓))
51, 2, 43bitr4g 314 1 𝜒 → (if-(𝜑, 𝜓, 𝜒) ↔ (𝜑𝜓)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  if-wif 1060
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-ifp 1061
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator