| Mathbox for Wolf Lammen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > wl-ifp-ncond2 | Structured version Visualization version GIF version | ||
| Description: If one case of an if- condition is false, the other automatically follows. (Contributed by Wolf Lammen, 21-Jul-2024.) |
| Ref | Expression |
|---|---|
| wl-ifp-ncond2 | ⊢ (¬ 𝜒 → (if-(𝜑, 𝜓, 𝜒) ↔ (𝜑 ∧ 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wl-ifp-ncond1 37465 | . 2 ⊢ (¬ 𝜒 → (if-(¬ 𝜑, 𝜒, 𝜓) ↔ (¬ ¬ 𝜑 ∧ 𝜓))) | |
| 2 | ifpn 1074 | . 2 ⊢ (if-(𝜑, 𝜓, 𝜒) ↔ if-(¬ 𝜑, 𝜒, 𝜓)) | |
| 3 | notnotb 315 | . . 3 ⊢ (𝜑 ↔ ¬ ¬ 𝜑) | |
| 4 | 3 | anbi1i 624 | . 2 ⊢ ((𝜑 ∧ 𝜓) ↔ (¬ ¬ 𝜑 ∧ 𝜓)) |
| 5 | 1, 2, 4 | 3bitr4g 314 | 1 ⊢ (¬ 𝜒 → (if-(𝜑, 𝜓, 𝜒) ↔ (𝜑 ∧ 𝜓))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 if-wif 1063 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-ifp 1064 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |