Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ifpn | Structured version Visualization version GIF version |
Description: Conditional operator for the negation of a proposition. (Contributed by BJ, 30-Sep-2019.) (Proof shortened by Wolf Lammen, 5-May-2024.) |
Ref | Expression |
---|---|
ifpn | ⊢ (if-(𝜑, 𝜓, 𝜒) ↔ if-(¬ 𝜑, 𝜒, 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ancom 460 | . 2 ⊢ (((¬ 𝜑 ∨ 𝜓) ∧ (¬ 𝜑 → 𝜒)) ↔ ((¬ 𝜑 → 𝜒) ∧ (¬ 𝜑 ∨ 𝜓))) | |
2 | dfifp5 1064 | . 2 ⊢ (if-(𝜑, 𝜓, 𝜒) ↔ ((¬ 𝜑 ∨ 𝜓) ∧ (¬ 𝜑 → 𝜒))) | |
3 | dfifp3 1062 | . 2 ⊢ (if-(¬ 𝜑, 𝜒, 𝜓) ↔ ((¬ 𝜑 → 𝜒) ∧ (¬ 𝜑 ∨ 𝜓))) | |
4 | 1, 2, 3 | 3bitr4i 302 | 1 ⊢ (if-(𝜑, 𝜓, 𝜒) ↔ if-(¬ 𝜑, 𝜒, 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∨ wo 843 if-wif 1059 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-ifp 1060 |
This theorem is referenced by: ifpfal 1073 wl-ifp-ncond2 35563 wl-df3xor2 35567 wl-2xor 35581 wl-df3maxtru1 35590 ifpxorcor 40981 |
Copyright terms: Public domain | W3C validator |