| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ifpn | Structured version Visualization version GIF version | ||
| Description: Conditional operator for the negation of a proposition. (Contributed by BJ, 30-Sep-2019.) (Proof shortened by Wolf Lammen, 5-May-2024.) |
| Ref | Expression |
|---|---|
| ifpn | ⊢ (if-(𝜑, 𝜓, 𝜒) ↔ if-(¬ 𝜑, 𝜒, 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ancom 460 | . 2 ⊢ (((¬ 𝜑 ∨ 𝜓) ∧ (¬ 𝜑 → 𝜒)) ↔ ((¬ 𝜑 → 𝜒) ∧ (¬ 𝜑 ∨ 𝜓))) | |
| 2 | dfifp5 1068 | . 2 ⊢ (if-(𝜑, 𝜓, 𝜒) ↔ ((¬ 𝜑 ∨ 𝜓) ∧ (¬ 𝜑 → 𝜒))) | |
| 3 | dfifp3 1066 | . 2 ⊢ (if-(¬ 𝜑, 𝜒, 𝜓) ↔ ((¬ 𝜑 → 𝜒) ∧ (¬ 𝜑 ∨ 𝜓))) | |
| 4 | 1, 2, 3 | 3bitr4i 303 | 1 ⊢ (if-(𝜑, 𝜓, 𝜒) ↔ if-(¬ 𝜑, 𝜒, 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 848 if-wif 1063 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-ifp 1064 |
| This theorem is referenced by: ifpfal 1076 wl-ifp-ncond2 37466 wl-df3xor2 37470 wl-2xor 37484 wl-df3maxtru1 37493 ifpxorcor 43489 |
| Copyright terms: Public domain | W3C validator |