MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ifpn Structured version   Visualization version   GIF version

Theorem ifpn 1070
Description: Conditional operator for the negation of a proposition. (Contributed by BJ, 30-Sep-2019.) (Proof shortened by Wolf Lammen, 5-May-2024.)
Assertion
Ref Expression
ifpn (if-(𝜑, 𝜓, 𝜒) ↔ if-(¬ 𝜑, 𝜒, 𝜓))

Proof of Theorem ifpn
StepHypRef Expression
1 ancom 460 . 2 (((¬ 𝜑𝜓) ∧ (¬ 𝜑𝜒)) ↔ ((¬ 𝜑𝜒) ∧ (¬ 𝜑𝜓)))
2 dfifp5 1064 . 2 (if-(𝜑, 𝜓, 𝜒) ↔ ((¬ 𝜑𝜓) ∧ (¬ 𝜑𝜒)))
3 dfifp3 1062 . 2 (if-(¬ 𝜑, 𝜒, 𝜓) ↔ ((¬ 𝜑𝜒) ∧ (¬ 𝜑𝜓)))
41, 2, 33bitr4i 302 1 (if-(𝜑, 𝜓, 𝜒) ↔ if-(¬ 𝜑, 𝜒, 𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 843  if-wif 1059
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-ifp 1060
This theorem is referenced by:  ifpfal  1073  wl-ifp-ncond2  35563  wl-df3xor2  35567  wl-2xor  35581  wl-df3maxtru1  35590  ifpxorcor  40981
  Copyright terms: Public domain W3C validator