| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elisset | Structured version Visualization version GIF version | ||
| Description: An element of a class exists. Use elissetv 2812 instead when sufficient (for instance in usages where 𝑥 is a dummy variable). (Contributed by NM, 1-May-1995.) Reduce dependencies on axioms. (Revised by BJ, 29-Apr-2019.) |
| Ref | Expression |
|---|---|
| elisset | ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elissetv 2812 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∃𝑧 𝑧 = 𝐴) | |
| 2 | iseqsetv-clel 2810 | . 2 ⊢ (∃𝑧 𝑧 = 𝐴 ↔ ∃𝑥 𝑥 = 𝐴) | |
| 3 | 1, 2 | sylib 218 | 1 ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∃wex 1780 ∈ wcel 2111 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-clel 2806 |
| This theorem is referenced by: ceqsalt 3470 ceqsalgALT 3473 cgsexg 3481 cgsex2g 3482 cgsex4g 3483 cgsex4gOLD 3484 vtocleg 3506 vtocld 3514 vtoclg1f 3522 spcimdv 3543 spcegv 3547 spc2egv 3549 spc2ed 3551 eqvincg 3598 clel2g 3609 clel4g 3613 elabd2 3620 elabgt 3622 elabgtOLD 3623 elabgtOLDOLD 3624 ralsng 4625 dfiun2g 4978 iinexg 5284 ralxfr2d 5346 copsex2t 5430 dmopab2rex 5856 fliftf 7249 eloprabga 7455 ovmpt4g 7493 eroveu 8736 mreiincl 17498 metustfbas 24472 brabgaf 32589 bnj852 34933 bnj938 34949 bnj1125 35004 bnj1148 35008 bnj1154 35011 fineqvpow 35138 dmopab3rexdif 35449 rexxfr3dALT 35683 bj-isseti 36922 bj-ceqsalt 36930 bj-ceqsalg 36933 bj-spcimdv 36939 bj-csbsnlem 36947 bj-vtoclg1f 36962 bj-snsetex 37007 bj-snglc 37013 bj-clel3gALT 37092 copsex2d 37183 prjspeclsp 42715 elex2VD 44940 elex22VD 44941 tpid3gVD 44944 elsprel 47585 |
| Copyright terms: Public domain | W3C validator |