![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elisset | Structured version Visualization version GIF version |
Description: An element of a class exists. Use elissetv 2815 instead when sufficient (for instance in usages where 𝑥 is a dummy variable). (Contributed by NM, 1-May-1995.) Reduce dependencies on axioms. (Revised by BJ, 29-Apr-2019.) |
Ref | Expression |
---|---|
elisset | ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elissetv 2815 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∃𝑦 𝑦 = 𝐴) | |
2 | vextru 2717 | . . . 4 ⊢ 𝑦 ∈ {𝑧 ∣ ⊤} | |
3 | 2 | issetlem 2814 | . . 3 ⊢ (𝐴 ∈ {𝑧 ∣ ⊤} ↔ ∃𝑦 𝑦 = 𝐴) |
4 | vextru 2717 | . . . 4 ⊢ 𝑥 ∈ {𝑧 ∣ ⊤} | |
5 | 4 | issetlem 2814 | . . 3 ⊢ (𝐴 ∈ {𝑧 ∣ ⊤} ↔ ∃𝑥 𝑥 = 𝐴) |
6 | 3, 5 | bitr3i 277 | . 2 ⊢ (∃𝑦 𝑦 = 𝐴 ↔ ∃𝑥 𝑥 = 𝐴) |
7 | 1, 6 | sylib 217 | 1 ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ⊤wtru 1543 ∃wex 1782 ∈ wcel 2107 {cab 2710 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2711 df-clel 2811 |
This theorem is referenced by: elex2OLD 3496 ceqsalt 3506 ceqsalgALT 3509 cgsexg 3519 cgsex2g 3520 cgsex4g 3521 cgsex4gOLD 3522 cgsex4gOLDOLD 3523 vtocld 3543 vtocleg 3546 vtoclg1f 3556 vtoclgOLD 3558 vtoclegftOLD 3575 spcimdv 3584 spcegv 3588 spc2egv 3590 spc2ed 3592 eqvincg 3637 clel2g 3648 clel4g 3653 elabd2 3661 elabgt 3663 elabg 3667 ralsng 4678 dfiun2g 5034 iinexg 5342 ralxfr2d 5409 copsex2t 5493 copsex2gOLD 5495 dmopab2rex 5918 fliftf 7312 eloprabga 7516 eloprabgaOLD 7517 ovmpt4g 7555 eroveu 8806 mreiincl 17540 metustfbas 24066 brabgaf 31868 bnj852 33963 bnj938 33979 bnj1125 34034 bnj1148 34038 bnj1154 34041 fineqvpow 34127 dmopab3rexdif 34427 bj-isseti 35806 bj-ceqsalt 35814 bj-ceqsalg 35817 bj-spcimdv 35823 bj-csbsnlem 35831 bj-vtoclg1f 35846 bj-snsetex 35892 bj-snglc 35898 bj-clel3gALT 35977 copsex2d 36068 prjspeclsp 41402 elex2VD 43647 elex22VD 43648 tpid3gVD 43651 elsprel 46191 |
Copyright terms: Public domain | W3C validator |