| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elisset | Structured version Visualization version GIF version | ||
| Description: An element of a class exists. Use elissetv 2809 instead when sufficient (for instance in usages where 𝑥 is a dummy variable). (Contributed by NM, 1-May-1995.) Reduce dependencies on axioms. (Revised by BJ, 29-Apr-2019.) |
| Ref | Expression |
|---|---|
| elisset | ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elissetv 2809 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∃𝑧 𝑧 = 𝐴) | |
| 2 | iseqsetv-clel 2807 | . 2 ⊢ (∃𝑧 𝑧 = 𝐴 ↔ ∃𝑥 𝑥 = 𝐴) | |
| 3 | 1, 2 | sylib 218 | 1 ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∃wex 1779 ∈ wcel 2109 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-clel 2803 |
| This theorem is referenced by: ceqsalt 3481 ceqsalgALT 3484 cgsexg 3492 cgsex2g 3493 cgsex4g 3494 cgsex4gOLD 3495 vtocleg 3519 vtocld 3527 vtoclg1f 3536 vtoclgOLD 3537 vtoclegftOLD 3555 spcimdv 3559 spcegv 3563 spc2egv 3565 spc2ed 3567 eqvincg 3614 clel2g 3625 clel4g 3629 elabd2 3636 elabgt 3638 elabgtOLD 3639 elabgtOLDOLD 3640 ralsng 4639 dfiun2g 4994 iinexg 5303 ralxfr2d 5365 copsex2t 5452 dmopab2rex 5881 fliftf 7290 eloprabga 7498 ovmpt4g 7536 eroveu 8785 mreiincl 17557 metustfbas 24445 brabgaf 32536 bnj852 34911 bnj938 34927 bnj1125 34982 bnj1148 34986 bnj1154 34989 fineqvpow 35086 dmopab3rexdif 35392 rexxfr3dALT 35626 bj-isseti 36866 bj-ceqsalt 36874 bj-ceqsalg 36877 bj-spcimdv 36883 bj-csbsnlem 36891 bj-vtoclg1f 36906 bj-snsetex 36951 bj-snglc 36957 bj-clel3gALT 37036 copsex2d 37127 prjspeclsp 42600 elex2VD 44827 elex22VD 44828 tpid3gVD 44831 elsprel 47476 |
| Copyright terms: Public domain | W3C validator |