Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elisset | Structured version Visualization version GIF version |
Description: An element of a class exists. Use elissetv 2820 instead when sufficient (for instance in usages where 𝑥 is a dummy variable). (Contributed by NM, 1-May-1995.) Reduce dependencies on axioms. (Revised by BJ, 29-Apr-2019.) |
Ref | Expression |
---|---|
elisset | ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elissetv 2820 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∃𝑦 𝑦 = 𝐴) | |
2 | vextru 2723 | . . . . . 6 ⊢ 𝑦 ∈ {𝑧 ∣ ⊤} | |
3 | 2 | biantru 530 | . . . . 5 ⊢ (𝑦 = 𝐴 ↔ (𝑦 = 𝐴 ∧ 𝑦 ∈ {𝑧 ∣ ⊤})) |
4 | 3 | exbii 1851 | . . . 4 ⊢ (∃𝑦 𝑦 = 𝐴 ↔ ∃𝑦(𝑦 = 𝐴 ∧ 𝑦 ∈ {𝑧 ∣ ⊤})) |
5 | dfclel 2818 | . . . 4 ⊢ (𝐴 ∈ {𝑧 ∣ ⊤} ↔ ∃𝑦(𝑦 = 𝐴 ∧ 𝑦 ∈ {𝑧 ∣ ⊤})) | |
6 | 4, 5 | bitr4i 277 | . . 3 ⊢ (∃𝑦 𝑦 = 𝐴 ↔ 𝐴 ∈ {𝑧 ∣ ⊤}) |
7 | vextru 2723 | . . . . . 6 ⊢ 𝑥 ∈ {𝑧 ∣ ⊤} | |
8 | 7 | biantru 530 | . . . . 5 ⊢ (𝑥 = 𝐴 ↔ (𝑥 = 𝐴 ∧ 𝑥 ∈ {𝑧 ∣ ⊤})) |
9 | 8 | exbii 1851 | . . . 4 ⊢ (∃𝑥 𝑥 = 𝐴 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 ∈ {𝑧 ∣ ⊤})) |
10 | dfclel 2818 | . . . 4 ⊢ (𝐴 ∈ {𝑧 ∣ ⊤} ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 ∈ {𝑧 ∣ ⊤})) | |
11 | 9, 10 | bitr4i 277 | . . 3 ⊢ (∃𝑥 𝑥 = 𝐴 ↔ 𝐴 ∈ {𝑧 ∣ ⊤}) |
12 | 6, 11 | bitr4i 277 | . 2 ⊢ (∃𝑦 𝑦 = 𝐴 ↔ ∃𝑥 𝑥 = 𝐴) |
13 | 1, 12 | sylib 217 | 1 ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ⊤wtru 1540 ∃wex 1782 ∈ wcel 2107 {cab 2716 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2069 df-clab 2717 df-clel 2817 |
This theorem is referenced by: clelab 2884 elex2OLD 3454 elex22 3455 ceqsalt 3463 ceqsalgALT 3466 cgsexg 3475 cgsex2g 3476 cgsex4g 3477 cgsex4gOLD 3478 vtoclgft 3493 vtocld 3495 vtoclg1f 3505 vtoclg 3506 vtocleg 3522 vtoclegft 3523 spcimdv 3533 spcegv 3537 spc2egv 3539 spc2ed 3541 eqvincg 3579 clel2g 3589 clel4g 3594 elabd2 3602 elabgt 3604 elabg 3608 ralsng 4610 dfiun2g 4961 iinexg 5266 ralxfr2d 5334 copsex2t 5407 copsex2gOLD 5409 dmopab2rex 5829 fliftf 7195 eloprabga 7391 eloprabgaOLD 7392 ovmpt4g 7429 eroveu 8610 mreiincl 17314 metustfbas 23722 brabgaf 30957 bnj852 32910 bnj938 32926 bnj1125 32981 bnj1148 32985 bnj1154 32988 fineqvpow 33074 dmopab3rexdif 33376 bj-isseti 35072 bj-ceqsalt 35080 bj-ceqsalg 35083 bj-spcimdv 35089 bj-csbsnlem 35097 bj-vtoclg1f 35112 bj-snsetex 35162 bj-snglc 35168 bj-clel3gALT 35230 copsex2d 35319 prjspeclsp 40458 elex2VD 42465 elex22VD 42466 tpid3gVD 42469 elsprel 44938 |
Copyright terms: Public domain | W3C validator |