| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elisset | Structured version Visualization version GIF version | ||
| Description: An element of a class exists. Use elissetv 2809 instead when sufficient (for instance in usages where 𝑥 is a dummy variable). (Contributed by NM, 1-May-1995.) Reduce dependencies on axioms. (Revised by BJ, 29-Apr-2019.) |
| Ref | Expression |
|---|---|
| elisset | ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elissetv 2809 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∃𝑧 𝑧 = 𝐴) | |
| 2 | iseqsetv-clel 2807 | . 2 ⊢ (∃𝑧 𝑧 = 𝐴 ↔ ∃𝑥 𝑥 = 𝐴) | |
| 3 | 1, 2 | sylib 218 | 1 ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∃wex 1779 ∈ wcel 2109 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-clel 2803 |
| This theorem is referenced by: ceqsalt 3478 ceqsalgALT 3481 cgsexg 3489 cgsex2g 3490 cgsex4g 3491 cgsex4gOLD 3492 vtocleg 3516 vtocld 3524 vtoclg1f 3533 vtoclgOLD 3534 vtoclegftOLD 3552 spcimdv 3556 spcegv 3560 spc2egv 3562 spc2ed 3564 eqvincg 3611 clel2g 3622 clel4g 3626 elabd2 3633 elabgt 3635 elabgtOLD 3636 elabgtOLDOLD 3637 ralsng 4635 dfiun2g 4990 iinexg 5298 ralxfr2d 5360 copsex2t 5447 dmopab2rex 5871 fliftf 7272 eloprabga 7478 ovmpt4g 7516 eroveu 8762 mreiincl 17533 metustfbas 24421 brabgaf 32509 bnj852 34884 bnj938 34900 bnj1125 34955 bnj1148 34959 bnj1154 34962 fineqvpow 35059 dmopab3rexdif 35365 rexxfr3dALT 35599 bj-isseti 36839 bj-ceqsalt 36847 bj-ceqsalg 36850 bj-spcimdv 36856 bj-csbsnlem 36864 bj-vtoclg1f 36879 bj-snsetex 36924 bj-snglc 36930 bj-clel3gALT 37009 copsex2d 37100 prjspeclsp 42573 elex2VD 44800 elex22VD 44801 tpid3gVD 44804 elsprel 47449 |
| Copyright terms: Public domain | W3C validator |