MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elisset Structured version   Visualization version   GIF version

Theorem elisset 2820
Description: An element of a class exists. Use elissetv 2819 instead when sufficient (for instance in usages where 𝑥 is a dummy variable). (Contributed by NM, 1-May-1995.) Reduce dependencies on axioms. (Revised by BJ, 29-Apr-2019.)
Assertion
Ref Expression
elisset (𝐴𝑉 → ∃𝑥 𝑥 = 𝐴)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem elisset
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 elissetv 2819 . 2 (𝐴𝑉 → ∃𝑧 𝑧 = 𝐴)
2 iseqsetv-clel 2817 . 2 (∃𝑧 𝑧 = 𝐴 ↔ ∃𝑥 𝑥 = 𝐴)
31, 2sylib 218 1 (𝐴𝑉 → ∃𝑥 𝑥 = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1536  wex 1775  wcel 2105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1539  df-ex 1776  df-sb 2062  df-clab 2712  df-clel 2813
This theorem is referenced by:  elex2OLD  3502  ceqsalt  3512  ceqsalgALT  3515  cgsexg  3523  cgsex2g  3524  cgsex4g  3525  cgsex4gOLD  3526  vtocleg  3552  vtocld  3560  vtoclg1f  3569  vtoclgOLD  3570  vtoclegftOLD  3588  spcimdv  3592  spcegv  3596  spc2egv  3598  spc2ed  3600  eqvincg  3647  clel2g  3658  clel4g  3662  elabd2  3669  elabgt  3671  elabgtOLD  3672  elabg  3676  ralsng  4679  dfiun2g  5034  iinexg  5353  ralxfr2d  5415  copsex2t  5502  dmopab2rex  5930  fliftf  7334  eloprabga  7540  eloprabgaOLD  7541  ovmpt4g  7579  eroveu  8850  mreiincl  17640  metustfbas  24585  brabgaf  32627  bnj852  34913  bnj938  34929  bnj1125  34984  bnj1148  34988  bnj1154  34991  fineqvpow  35088  dmopab3rexdif  35389  rexxfr3dALT  35623  bj-isseti  36860  bj-ceqsalt  36868  bj-ceqsalg  36871  bj-spcimdv  36877  bj-csbsnlem  36885  bj-vtoclg1f  36900  bj-snsetex  36945  bj-snglc  36951  bj-clel3gALT  37030  copsex2d  37121  prjspeclsp  42598  elex2VD  44835  elex22VD  44836  tpid3gVD  44839  elsprel  47399
  Copyright terms: Public domain W3C validator