| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elisset | Structured version Visualization version GIF version | ||
| Description: An element of a class exists. Use elissetv 2809 instead when sufficient (for instance in usages where 𝑥 is a dummy variable). (Contributed by NM, 1-May-1995.) Reduce dependencies on axioms. (Revised by BJ, 29-Apr-2019.) |
| Ref | Expression |
|---|---|
| elisset | ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elissetv 2809 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∃𝑧 𝑧 = 𝐴) | |
| 2 | iseqsetv-clel 2807 | . 2 ⊢ (∃𝑧 𝑧 = 𝐴 ↔ ∃𝑥 𝑥 = 𝐴) | |
| 3 | 1, 2 | sylib 218 | 1 ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∃wex 1779 ∈ wcel 2109 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-clel 2803 |
| This theorem is referenced by: ceqsalt 3470 ceqsalgALT 3473 cgsexg 3481 cgsex2g 3482 cgsex4g 3483 cgsex4gOLD 3484 vtocleg 3508 vtocld 3516 vtoclg1f 3525 vtoclgOLD 3526 vtoclegftOLD 3544 spcimdv 3548 spcegv 3552 spc2egv 3554 spc2ed 3556 eqvincg 3603 clel2g 3614 clel4g 3618 elabd2 3625 elabgt 3627 elabgtOLD 3628 elabgtOLDOLD 3629 ralsng 4627 dfiun2g 4980 iinexg 5287 ralxfr2d 5349 copsex2t 5435 dmopab2rex 5860 fliftf 7252 eloprabga 7458 ovmpt4g 7496 eroveu 8739 mreiincl 17498 metustfbas 24443 brabgaf 32553 bnj852 34888 bnj938 34904 bnj1125 34959 bnj1148 34963 bnj1154 34966 fineqvpow 35071 dmopab3rexdif 35382 rexxfr3dALT 35616 bj-isseti 36856 bj-ceqsalt 36864 bj-ceqsalg 36867 bj-spcimdv 36873 bj-csbsnlem 36881 bj-vtoclg1f 36896 bj-snsetex 36941 bj-snglc 36947 bj-clel3gALT 37026 copsex2d 37117 prjspeclsp 42589 elex2VD 44815 elex22VD 44816 tpid3gVD 44819 elsprel 47463 |
| Copyright terms: Public domain | W3C validator |