Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elisset | Structured version Visualization version GIF version |
Description: An element of a class exists. Use elissetv 2818 instead when sufficient (for instance in usages where 𝑥 is a dummy variable). (Contributed by NM, 1-May-1995.) Reduce dependencies on axioms. (Revised by BJ, 29-Apr-2019.) |
Ref | Expression |
---|---|
elisset | ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elissetv 2818 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∃𝑦 𝑦 = 𝐴) | |
2 | vextru 2721 | . . . . . 6 ⊢ 𝑦 ∈ {𝑧 ∣ ⊤} | |
3 | 2 | biantru 531 | . . . . 5 ⊢ (𝑦 = 𝐴 ↔ (𝑦 = 𝐴 ∧ 𝑦 ∈ {𝑧 ∣ ⊤})) |
4 | 3 | exbii 1850 | . . . 4 ⊢ (∃𝑦 𝑦 = 𝐴 ↔ ∃𝑦(𝑦 = 𝐴 ∧ 𝑦 ∈ {𝑧 ∣ ⊤})) |
5 | dfclel 2816 | . . . 4 ⊢ (𝐴 ∈ {𝑧 ∣ ⊤} ↔ ∃𝑦(𝑦 = 𝐴 ∧ 𝑦 ∈ {𝑧 ∣ ⊤})) | |
6 | 4, 5 | bitr4i 278 | . . 3 ⊢ (∃𝑦 𝑦 = 𝐴 ↔ 𝐴 ∈ {𝑧 ∣ ⊤}) |
7 | vextru 2721 | . . . . . 6 ⊢ 𝑥 ∈ {𝑧 ∣ ⊤} | |
8 | 7 | biantru 531 | . . . . 5 ⊢ (𝑥 = 𝐴 ↔ (𝑥 = 𝐴 ∧ 𝑥 ∈ {𝑧 ∣ ⊤})) |
9 | 8 | exbii 1850 | . . . 4 ⊢ (∃𝑥 𝑥 = 𝐴 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 ∈ {𝑧 ∣ ⊤})) |
10 | dfclel 2816 | . . . 4 ⊢ (𝐴 ∈ {𝑧 ∣ ⊤} ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 ∈ {𝑧 ∣ ⊤})) | |
11 | 9, 10 | bitr4i 278 | . . 3 ⊢ (∃𝑥 𝑥 = 𝐴 ↔ 𝐴 ∈ {𝑧 ∣ ⊤}) |
12 | 6, 11 | bitr4i 278 | . 2 ⊢ (∃𝑦 𝑦 = 𝐴 ↔ ∃𝑥 𝑥 = 𝐴) |
13 | 1, 12 | sylib 217 | 1 ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1541 ⊤wtru 1542 ∃wex 1781 ∈ wcel 2106 {cab 2714 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1544 df-ex 1782 df-sb 2068 df-clab 2715 df-clel 2815 |
This theorem is referenced by: clelab 2881 elex2OLD 3463 elex22 3464 ceqsalt 3472 ceqsalgALT 3475 cgsexg 3484 cgsex2g 3485 cgsex4g 3486 cgsex4gOLD 3487 vtoclgft 3504 vtocld 3506 vtoclg1f 3516 vtoclg 3517 vtocleg 3533 vtoclegft 3534 spcimdv 3544 spcegv 3548 spc2egv 3550 spc2ed 3552 eqvincg 3590 clel2g 3601 clel4g 3606 elabd2 3614 elabgt 3616 elabg 3620 ralsng 4625 dfiun2g 4981 iinexg 5289 ralxfr2d 5357 copsex2t 5440 copsex2gOLD 5442 dmopab2rex 5863 fliftf 7246 eloprabga 7448 eloprabgaOLD 7449 ovmpt4g 7486 eroveu 8676 mreiincl 17402 metustfbas 23818 brabgaf 31233 bnj852 33198 bnj938 33214 bnj1125 33269 bnj1148 33273 bnj1154 33276 fineqvpow 33362 dmopab3rexdif 33664 bj-isseti 35199 bj-ceqsalt 35207 bj-ceqsalg 35210 bj-spcimdv 35216 bj-csbsnlem 35224 bj-vtoclg1f 35239 bj-snsetex 35288 bj-snglc 35294 bj-clel3gALT 35373 copsex2d 35464 prjspeclsp 40762 elex2VD 42831 elex22VD 42832 tpid3gVD 42835 elsprel 45345 |
Copyright terms: Public domain | W3C validator |