![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elisset | Structured version Visualization version GIF version |
Description: An element of a class exists. Use elissetv 2819 instead when sufficient (for instance in usages where 𝑥 is a dummy variable). (Contributed by NM, 1-May-1995.) Reduce dependencies on axioms. (Revised by BJ, 29-Apr-2019.) |
Ref | Expression |
---|---|
elisset | ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elissetv 2819 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∃𝑧 𝑧 = 𝐴) | |
2 | iseqsetv-clel 2817 | . 2 ⊢ (∃𝑧 𝑧 = 𝐴 ↔ ∃𝑥 𝑥 = 𝐴) | |
3 | 1, 2 | sylib 218 | 1 ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1536 ∃wex 1775 ∈ wcel 2105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1539 df-ex 1776 df-sb 2062 df-clab 2712 df-clel 2813 |
This theorem is referenced by: elex2OLD 3502 ceqsalt 3512 ceqsalgALT 3515 cgsexg 3523 cgsex2g 3524 cgsex4g 3525 cgsex4gOLD 3526 vtocleg 3552 vtocld 3560 vtoclg1f 3569 vtoclgOLD 3570 vtoclegftOLD 3588 spcimdv 3592 spcegv 3596 spc2egv 3598 spc2ed 3600 eqvincg 3647 clel2g 3658 clel4g 3662 elabd2 3669 elabgt 3671 elabgtOLD 3672 elabg 3676 ralsng 4679 dfiun2g 5034 iinexg 5353 ralxfr2d 5415 copsex2t 5502 dmopab2rex 5930 fliftf 7334 eloprabga 7540 eloprabgaOLD 7541 ovmpt4g 7579 eroveu 8850 mreiincl 17640 metustfbas 24585 brabgaf 32627 bnj852 34913 bnj938 34929 bnj1125 34984 bnj1148 34988 bnj1154 34991 fineqvpow 35088 dmopab3rexdif 35389 rexxfr3dALT 35623 bj-isseti 36860 bj-ceqsalt 36868 bj-ceqsalg 36871 bj-spcimdv 36877 bj-csbsnlem 36885 bj-vtoclg1f 36900 bj-snsetex 36945 bj-snglc 36951 bj-clel3gALT 37030 copsex2d 37121 prjspeclsp 42598 elex2VD 44835 elex22VD 44836 tpid3gVD 44839 elsprel 47399 |
Copyright terms: Public domain | W3C validator |