Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elisset | Structured version Visualization version GIF version |
Description: An element of a class exists. Use elissetv 2819 instead when sufficient (for instance in usages where 𝑥 is a dummy variable). (Contributed by NM, 1-May-1995.) Reduce dependencies on axioms. (Revised by BJ, 29-Apr-2019.) |
Ref | Expression |
---|---|
elisset | ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elissetv 2819 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∃𝑦 𝑦 = 𝐴) | |
2 | vextru 2722 | . . . . . 6 ⊢ 𝑦 ∈ {𝑧 ∣ ⊤} | |
3 | 2 | biantru 529 | . . . . 5 ⊢ (𝑦 = 𝐴 ↔ (𝑦 = 𝐴 ∧ 𝑦 ∈ {𝑧 ∣ ⊤})) |
4 | 3 | exbii 1851 | . . . 4 ⊢ (∃𝑦 𝑦 = 𝐴 ↔ ∃𝑦(𝑦 = 𝐴 ∧ 𝑦 ∈ {𝑧 ∣ ⊤})) |
5 | dfclel 2818 | . . . 4 ⊢ (𝐴 ∈ {𝑧 ∣ ⊤} ↔ ∃𝑦(𝑦 = 𝐴 ∧ 𝑦 ∈ {𝑧 ∣ ⊤})) | |
6 | 4, 5 | bitr4i 277 | . . 3 ⊢ (∃𝑦 𝑦 = 𝐴 ↔ 𝐴 ∈ {𝑧 ∣ ⊤}) |
7 | vextru 2722 | . . . . . 6 ⊢ 𝑥 ∈ {𝑧 ∣ ⊤} | |
8 | 7 | biantru 529 | . . . . 5 ⊢ (𝑥 = 𝐴 ↔ (𝑥 = 𝐴 ∧ 𝑥 ∈ {𝑧 ∣ ⊤})) |
9 | 8 | exbii 1851 | . . . 4 ⊢ (∃𝑥 𝑥 = 𝐴 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 ∈ {𝑧 ∣ ⊤})) |
10 | dfclel 2818 | . . . 4 ⊢ (𝐴 ∈ {𝑧 ∣ ⊤} ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 ∈ {𝑧 ∣ ⊤})) | |
11 | 9, 10 | bitr4i 277 | . . 3 ⊢ (∃𝑥 𝑥 = 𝐴 ↔ 𝐴 ∈ {𝑧 ∣ ⊤}) |
12 | 6, 11 | bitr4i 277 | . 2 ⊢ (∃𝑦 𝑦 = 𝐴 ↔ ∃𝑥 𝑥 = 𝐴) |
13 | 1, 12 | sylib 217 | 1 ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ⊤wtru 1540 ∃wex 1783 ∈ wcel 2108 {cab 2715 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-clel 2817 |
This theorem is referenced by: clelab 2882 elex2 3443 elex22 3444 ceqsalt 3452 ceqsalgALT 3455 cgsexg 3464 cgsex2g 3465 cgsex4g 3466 cgsex4gOLD 3467 vtoclgft 3482 vtocld 3484 vtoclg1f 3494 vtoclg 3495 vtocleg 3511 vtoclegft 3512 spcimdv 3522 spcegv 3526 spc2egv 3528 spc2ed 3530 eqvincg 3570 clel2g 3581 clel4g 3586 elabd2 3594 elabgt 3596 elabg 3600 ralsng 4606 iinexg 5260 ralxfr2d 5328 copsex2t 5400 copsex2gOLD 5402 dmopab2rex 5815 fliftf 7166 eloprabga 7360 eloprabgaOLD 7361 ovmpt4g 7398 eroveu 8559 mreiincl 17222 metustfbas 23619 brabgaf 30849 bnj852 32801 bnj938 32817 bnj1125 32872 bnj1148 32876 bnj1154 32879 fineqvpow 32965 dmopab3rexdif 33267 bj-isseti 34990 bj-ceqsalt 34998 bj-ceqsalg 35001 bj-spcimdv 35007 bj-csbsnlem 35015 bj-vtoclg1f 35030 bj-snsetex 35080 bj-snglc 35086 bj-clel3gALT 35148 copsex2d 35237 prjspeclsp 40372 elex2VD 42347 elex22VD 42348 tpid3gVD 42351 elsprel 44815 |
Copyright terms: Public domain | W3C validator |