| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elisset | Structured version Visualization version GIF version | ||
| Description: An element of a class exists. Use elissetv 2810 instead when sufficient (for instance in usages where 𝑥 is a dummy variable). (Contributed by NM, 1-May-1995.) Reduce dependencies on axioms. (Revised by BJ, 29-Apr-2019.) |
| Ref | Expression |
|---|---|
| elisset | ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elissetv 2810 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∃𝑧 𝑧 = 𝐴) | |
| 2 | iseqsetv-clel 2808 | . 2 ⊢ (∃𝑧 𝑧 = 𝐴 ↔ ∃𝑥 𝑥 = 𝐴) | |
| 3 | 1, 2 | sylib 218 | 1 ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∃wex 1779 ∈ wcel 2109 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-clel 2804 |
| This theorem is referenced by: ceqsalt 3484 ceqsalgALT 3487 cgsexg 3495 cgsex2g 3496 cgsex4g 3497 cgsex4gOLD 3498 vtocleg 3522 vtocld 3530 vtoclg1f 3539 vtoclgOLD 3540 vtoclegftOLD 3558 spcimdv 3562 spcegv 3566 spc2egv 3568 spc2ed 3570 eqvincg 3617 clel2g 3628 clel4g 3632 elabd2 3639 elabgt 3641 elabgtOLD 3642 elabgtOLDOLD 3643 ralsng 4642 dfiun2g 4997 iinexg 5306 ralxfr2d 5368 copsex2t 5455 dmopab2rex 5884 fliftf 7293 eloprabga 7501 ovmpt4g 7539 eroveu 8788 mreiincl 17564 metustfbas 24452 brabgaf 32543 bnj852 34918 bnj938 34934 bnj1125 34989 bnj1148 34993 bnj1154 34996 fineqvpow 35093 dmopab3rexdif 35399 rexxfr3dALT 35633 bj-isseti 36873 bj-ceqsalt 36881 bj-ceqsalg 36884 bj-spcimdv 36890 bj-csbsnlem 36898 bj-vtoclg1f 36913 bj-snsetex 36958 bj-snglc 36964 bj-clel3gALT 37043 copsex2d 37134 prjspeclsp 42607 elex2VD 44834 elex22VD 44835 tpid3gVD 44838 elsprel 47480 |
| Copyright terms: Public domain | W3C validator |