![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elisset | Structured version Visualization version GIF version |
Description: An element of a class exists. Use elissetv 2825 instead when sufficient (for instance in usages where 𝑥 is a dummy variable). (Contributed by NM, 1-May-1995.) Reduce dependencies on axioms. (Revised by BJ, 29-Apr-2019.) |
Ref | Expression |
---|---|
elisset | ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elissetv 2825 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∃𝑧 𝑧 = 𝐴) | |
2 | iseqsetv-clel 2823 | . 2 ⊢ (∃𝑧 𝑧 = 𝐴 ↔ ∃𝑥 𝑥 = 𝐴) | |
3 | 1, 2 | sylib 218 | 1 ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∃wex 1777 ∈ wcel 2108 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-clel 2819 |
This theorem is referenced by: elex2OLD 3513 ceqsalt 3523 ceqsalgALT 3526 cgsexg 3536 cgsex2g 3537 cgsex4g 3538 cgsex4gOLD 3539 vtocleg 3565 vtocld 3573 vtoclg1f 3582 vtoclgOLD 3583 vtoclegftOLD 3602 spcimdv 3606 spcegv 3610 spc2egv 3612 spc2ed 3614 eqvincg 3661 clel2g 3672 clel4g 3676 elabd2 3683 elabgt 3685 elabgtOLD 3686 elabg 3690 ralsng 4697 dfiun2g 5053 iinexg 5366 ralxfr2d 5428 copsex2t 5512 dmopab2rex 5942 fliftf 7351 eloprabga 7558 eloprabgaOLD 7559 ovmpt4g 7597 eroveu 8870 mreiincl 17654 metustfbas 24591 brabgaf 32630 bnj852 34897 bnj938 34913 bnj1125 34968 bnj1148 34972 bnj1154 34975 fineqvpow 35072 dmopab3rexdif 35373 rexxfr3dALT 35607 bj-isseti 36844 bj-ceqsalt 36852 bj-ceqsalg 36855 bj-spcimdv 36861 bj-csbsnlem 36869 bj-vtoclg1f 36884 bj-snsetex 36929 bj-snglc 36935 bj-clel3gALT 37014 copsex2d 37105 prjspeclsp 42567 elex2VD 44809 elex22VD 44810 tpid3gVD 44813 elsprel 47349 |
Copyright terms: Public domain | W3C validator |