| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elisset | Structured version Visualization version GIF version | ||
| Description: An element of a class exists. Use elissetv 2815 instead when sufficient (for instance in usages where 𝑥 is a dummy variable). (Contributed by NM, 1-May-1995.) Reduce dependencies on axioms. (Revised by BJ, 29-Apr-2019.) |
| Ref | Expression |
|---|---|
| elisset | ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elissetv 2815 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∃𝑧 𝑧 = 𝐴) | |
| 2 | iseqsetv-clel 2813 | . 2 ⊢ (∃𝑧 𝑧 = 𝐴 ↔ ∃𝑥 𝑥 = 𝐴) | |
| 3 | 1, 2 | sylib 218 | 1 ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∃wex 1779 ∈ wcel 2108 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-clel 2809 |
| This theorem is referenced by: elex2OLD 3484 ceqsalt 3494 ceqsalgALT 3497 cgsexg 3505 cgsex2g 3506 cgsex4g 3507 cgsex4gOLD 3508 vtocleg 3532 vtocld 3540 vtoclg1f 3549 vtoclgOLD 3550 vtoclegftOLD 3568 spcimdv 3572 spcegv 3576 spc2egv 3578 spc2ed 3580 eqvincg 3627 clel2g 3638 clel4g 3642 elabd2 3649 elabgt 3651 elabgtOLD 3652 elabg 3655 ralsng 4651 dfiun2g 5006 iinexg 5318 ralxfr2d 5380 copsex2t 5467 dmopab2rex 5897 fliftf 7308 eloprabga 7516 ovmpt4g 7554 eroveu 8826 mreiincl 17608 metustfbas 24496 brabgaf 32588 bnj852 34952 bnj938 34968 bnj1125 35023 bnj1148 35027 bnj1154 35030 fineqvpow 35127 dmopab3rexdif 35427 rexxfr3dALT 35661 bj-isseti 36896 bj-ceqsalt 36904 bj-ceqsalg 36907 bj-spcimdv 36913 bj-csbsnlem 36921 bj-vtoclg1f 36936 bj-snsetex 36981 bj-snglc 36987 bj-clel3gALT 37066 copsex2d 37157 prjspeclsp 42635 elex2VD 44862 elex22VD 44863 tpid3gVD 44866 elsprel 47489 |
| Copyright terms: Public domain | W3C validator |