| Mathbox for Wolf Lammen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > wl-motae | Structured version Visualization version GIF version | ||
| Description: Change bound variable. Uses only Tarski's FOL axiom schemes. Part of Lemma 7 of [KalishMontague] p. 86. (Contributed by Wolf Lammen, 5-Mar-2023.) |
| Ref | Expression |
|---|---|
| wl-motae | ⊢ (∃*𝑢⊤ → ∀𝑥 𝑦 = 𝑧) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wl-cbvmotv 37489 | . 2 ⊢ (∃*𝑢⊤ → ∃*𝑣⊤) | |
| 2 | wl-moteq 37490 | . . 3 ⊢ (∃*𝑣⊤ → 𝑦 = 𝑧) | |
| 3 | 2 | alrimiv 1926 | . 2 ⊢ (∃*𝑣⊤ → ∀𝑥 𝑦 = 𝑧) |
| 4 | 1, 3 | syl 17 | 1 ⊢ (∃*𝑢⊤ → ∀𝑥 𝑦 = 𝑧) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1537 ⊤wtru 1540 ∃*wmo 2536 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-ex 1779 df-mo 2538 |
| This theorem is referenced by: wl-moae 37492 |
| Copyright terms: Public domain | W3C validator |