Users' Mathboxes Mathbox for Wolf Lammen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wl-motae Structured version   Visualization version   GIF version

Theorem wl-motae 36688
Description: Change bound variable. Uses only Tarski's FOL axiom schemes. Part of Lemma 7 of [KalishMontague] p. 86. (Contributed by Wolf Lammen, 5-Mar-2023.)
Assertion
Ref Expression
wl-motae (∃*𝑢⊤ → ∀𝑥 𝑦 = 𝑧)

Proof of Theorem wl-motae
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 wl-cbvmotv 36686 . 2 (∃*𝑢⊤ → ∃*𝑣⊤)
2 wl-moteq 36687 . . 3 (∃*𝑣⊤ → 𝑦 = 𝑧)
32alrimiv 1929 . 2 (∃*𝑣⊤ → ∀𝑥 𝑦 = 𝑧)
41, 3syl 17 1 (∃*𝑢⊤ → ∀𝑥 𝑦 = 𝑧)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1538  wtru 1541  ∃*wmo 2531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1543  df-ex 1781  df-mo 2533
This theorem is referenced by:  wl-moae  36689
  Copyright terms: Public domain W3C validator