Mathbox for Wolf Lammen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > wl-motae | Structured version Visualization version GIF version |
Description: Change bound variable. Uses only Tarski's FOL axiom schemes. Part of Lemma 7 of [KalishMontague] p. 86. (Contributed by Wolf Lammen, 5-Mar-2023.) |
Ref | Expression |
---|---|
wl-motae | ⊢ (∃*𝑢⊤ → ∀𝑥 𝑦 = 𝑧) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wl-cbvmotv 35284 | . 2 ⊢ (∃*𝑢⊤ → ∃*𝑣⊤) | |
2 | wl-moteq 35285 | . . 3 ⊢ (∃*𝑣⊤ → 𝑦 = 𝑧) | |
3 | 2 | alrimiv 1933 | . 2 ⊢ (∃*𝑣⊤ → ∀𝑥 𝑦 = 𝑧) |
4 | 1, 3 | syl 17 | 1 ⊢ (∃*𝑢⊤ → ∀𝑥 𝑦 = 𝑧) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1540 ⊤wtru 1543 ∃*wmo 2538 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1916 ax-6 1974 ax-7 2019 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1545 df-ex 1787 df-mo 2540 |
This theorem is referenced by: wl-moae 35287 |
Copyright terms: Public domain | W3C validator |