Mathbox for Wolf Lammen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > wl-cbvmotv | Structured version Visualization version GIF version |
Description: Change bound variable. Uses only Tarski's FOL axiom schemes. Part of Lemma 7 of [KalishMontague] p. 86. (Contributed by Wolf Lammen, 5-Mar-2023.) |
Ref | Expression |
---|---|
wl-cbvmotv | ⊢ (∃*𝑥⊤ → ∃*𝑦⊤) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax7v2 2015 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝑥 = 𝑧 → 𝑦 = 𝑧)) | |
2 | 1 | imim2d 57 | . . . 4 ⊢ (𝑥 = 𝑦 → ((⊤ → 𝑥 = 𝑧) → (⊤ → 𝑦 = 𝑧))) |
3 | 2 | cbvalivw 2011 | . . 3 ⊢ (∀𝑥(⊤ → 𝑥 = 𝑧) → ∀𝑦(⊤ → 𝑦 = 𝑧)) |
4 | 3 | eximi 1838 | . 2 ⊢ (∃𝑧∀𝑥(⊤ → 𝑥 = 𝑧) → ∃𝑧∀𝑦(⊤ → 𝑦 = 𝑧)) |
5 | df-mo 2540 | . 2 ⊢ (∃*𝑥⊤ ↔ ∃𝑧∀𝑥(⊤ → 𝑥 = 𝑧)) | |
6 | df-mo 2540 | . 2 ⊢ (∃*𝑦⊤ ↔ ∃𝑧∀𝑦(⊤ → 𝑦 = 𝑧)) | |
7 | 4, 5, 6 | 3imtr4i 291 | 1 ⊢ (∃*𝑥⊤ → ∃*𝑦⊤) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 ⊤wtru 1540 ∃wex 1783 ∃*wmo 2538 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 |
This theorem depends on definitions: df-bi 206 df-ex 1784 df-mo 2540 |
This theorem is referenced by: wl-motae 35601 |
Copyright terms: Public domain | W3C validator |