MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xoror Structured version   Visualization version   GIF version

Theorem xoror 1518
Description: Exclusive disjunction implies disjunction ("XOR implies OR"). (Contributed by BJ, 19-Apr-2019.)
Assertion
Ref Expression
xoror ((𝜑𝜓) → (𝜑𝜓))

Proof of Theorem xoror
StepHypRef Expression
1 xor2 1517 . 2 ((𝜑𝜓) ↔ ((𝜑𝜓) ∧ ¬ (𝜑𝜓)))
21simplbi 499 1 ((𝜑𝜓) → (𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 397  wo 846  wxo 1510
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-xor 1511
This theorem is referenced by:  mtpxor  1774  oneptri  41992  afv2orxorb  45923
  Copyright terms: Public domain W3C validator