|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > xoror | Structured version Visualization version GIF version | ||
| Description: Exclusive disjunction implies disjunction ("XOR implies OR"). (Contributed by BJ, 19-Apr-2019.) | 
| Ref | Expression | 
|---|---|
| xoror | ⊢ ((𝜑 ⊻ 𝜓) → (𝜑 ∨ 𝜓)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | xor2 1516 | . 2 ⊢ ((𝜑 ⊻ 𝜓) ↔ ((𝜑 ∨ 𝜓) ∧ ¬ (𝜑 ∧ 𝜓))) | |
| 2 | 1 | simplbi 497 | 1 ⊢ ((𝜑 ⊻ 𝜓) → (𝜑 ∨ 𝜓)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 847 ⊻ wxo 1510 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-xor 1511 | 
| This theorem is referenced by: mtpxor 1770 oneptri 43274 afv2orxorb 47245 | 
| Copyright terms: Public domain | W3C validator |