Proof of Theorem afv2orxorb
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | eleq1 2828 | . . . . . . . . . . 11
⊢ (𝐵 = (𝐹''''𝐴) → (𝐵 ∈ ran 𝐹 ↔ (𝐹''''𝐴) ∈ ran 𝐹)) | 
| 2 | 1 | eqcoms 2744 | . . . . . . . . . 10
⊢ ((𝐹''''𝐴) = 𝐵 → (𝐵 ∈ ran 𝐹 ↔ (𝐹''''𝐴) ∈ ran 𝐹)) | 
| 3 | 2 | biimpa 476 | . . . . . . . . 9
⊢ (((𝐹''''𝐴) = 𝐵 ∧ 𝐵 ∈ ran 𝐹) → (𝐹''''𝐴) ∈ ran 𝐹) | 
| 4 |  | nnel 3055 | . . . . . . . . 9
⊢ (¬
(𝐹''''𝐴) ∉ ran 𝐹 ↔ (𝐹''''𝐴) ∈ ran 𝐹) | 
| 5 | 3, 4 | sylibr 234 | . . . . . . . 8
⊢ (((𝐹''''𝐴) = 𝐵 ∧ 𝐵 ∈ ran 𝐹) → ¬ (𝐹''''𝐴) ∉ ran 𝐹) | 
| 6 | 5 | a1d 25 | . . . . . . 7
⊢ (((𝐹''''𝐴) = 𝐵 ∧ 𝐵 ∈ ran 𝐹) → ((𝐹''''𝐴) = 𝐵 → ¬ (𝐹''''𝐴) ∉ ran 𝐹)) | 
| 7 |  | simpl 482 | . . . . . . . 8
⊢ (((𝐹''''𝐴) = 𝐵 ∧ 𝐵 ∈ ran 𝐹) → (𝐹''''𝐴) = 𝐵) | 
| 8 | 7 | a1d 25 | . . . . . . 7
⊢ (((𝐹''''𝐴) = 𝐵 ∧ 𝐵 ∈ ran 𝐹) → (¬ (𝐹''''𝐴) ∉ ran 𝐹 → (𝐹''''𝐴) = 𝐵)) | 
| 9 | 6, 8 | jca 511 | . . . . . 6
⊢ (((𝐹''''𝐴) = 𝐵 ∧ 𝐵 ∈ ran 𝐹) → (((𝐹''''𝐴) = 𝐵 → ¬ (𝐹''''𝐴) ∉ ran 𝐹) ∧ (¬ (𝐹''''𝐴) ∉ ran 𝐹 → (𝐹''''𝐴) = 𝐵))) | 
| 10 | 9 | ex 412 | . . . . 5
⊢ ((𝐹''''𝐴) = 𝐵 → (𝐵 ∈ ran 𝐹 → (((𝐹''''𝐴) = 𝐵 → ¬ (𝐹''''𝐴) ∉ ran 𝐹) ∧ (¬ (𝐹''''𝐴) ∉ ran 𝐹 → (𝐹''''𝐴) = 𝐵)))) | 
| 11 |  | eleq1 2828 | . . . . . . . . . 10
⊢ ((𝐹''''𝐴) = 𝐵 → ((𝐹''''𝐴) ∈ ran 𝐹 ↔ 𝐵 ∈ ran 𝐹)) | 
| 12 | 11 | anbi2d 630 | . . . . . . . . 9
⊢ ((𝐹''''𝐴) = 𝐵 → (((𝐹''''𝐴) ∉ ran 𝐹 ∧ (𝐹''''𝐴) ∈ ran 𝐹) ↔ ((𝐹''''𝐴) ∉ ran 𝐹 ∧ 𝐵 ∈ ran 𝐹))) | 
| 13 |  | pm2.24nel 3058 | . . . . . . . . . 10
⊢ ((𝐹''''𝐴) ∈ ran 𝐹 → ((𝐹''''𝐴) ∉ ran 𝐹 → ¬ (𝐹''''𝐴) ∉ ran 𝐹)) | 
| 14 | 13 | impcom 407 | . . . . . . . . 9
⊢ (((𝐹''''𝐴) ∉ ran 𝐹 ∧ (𝐹''''𝐴) ∈ ran 𝐹) → ¬ (𝐹''''𝐴) ∉ ran 𝐹) | 
| 15 | 12, 14 | biimtrrdi 254 | . . . . . . . 8
⊢ ((𝐹''''𝐴) = 𝐵 → (((𝐹''''𝐴) ∉ ran 𝐹 ∧ 𝐵 ∈ ran 𝐹) → ¬ (𝐹''''𝐴) ∉ ran 𝐹)) | 
| 16 | 15 | com12 32 | . . . . . . 7
⊢ (((𝐹''''𝐴) ∉ ran 𝐹 ∧ 𝐵 ∈ ran 𝐹) → ((𝐹''''𝐴) = 𝐵 → ¬ (𝐹''''𝐴) ∉ ran 𝐹)) | 
| 17 |  | pm2.24 124 | . . . . . . . 8
⊢ ((𝐹''''𝐴) ∉ ran 𝐹 → (¬ (𝐹''''𝐴) ∉ ran 𝐹 → (𝐹''''𝐴) = 𝐵)) | 
| 18 | 17 | adantr 480 | . . . . . . 7
⊢ (((𝐹''''𝐴) ∉ ran 𝐹 ∧ 𝐵 ∈ ran 𝐹) → (¬ (𝐹''''𝐴) ∉ ran 𝐹 → (𝐹''''𝐴) = 𝐵)) | 
| 19 | 16, 18 | jca 511 | . . . . . 6
⊢ (((𝐹''''𝐴) ∉ ran 𝐹 ∧ 𝐵 ∈ ran 𝐹) → (((𝐹''''𝐴) = 𝐵 → ¬ (𝐹''''𝐴) ∉ ran 𝐹) ∧ (¬ (𝐹''''𝐴) ∉ ran 𝐹 → (𝐹''''𝐴) = 𝐵))) | 
| 20 | 19 | ex 412 | . . . . 5
⊢ ((𝐹''''𝐴) ∉ ran 𝐹 → (𝐵 ∈ ran 𝐹 → (((𝐹''''𝐴) = 𝐵 → ¬ (𝐹''''𝐴) ∉ ran 𝐹) ∧ (¬ (𝐹''''𝐴) ∉ ran 𝐹 → (𝐹''''𝐴) = 𝐵)))) | 
| 21 | 10, 20 | jaoi 857 | . . . 4
⊢ (((𝐹''''𝐴) = 𝐵 ∨ (𝐹''''𝐴) ∉ ran 𝐹) → (𝐵 ∈ ran 𝐹 → (((𝐹''''𝐴) = 𝐵 → ¬ (𝐹''''𝐴) ∉ ran 𝐹) ∧ (¬ (𝐹''''𝐴) ∉ ran 𝐹 → (𝐹''''𝐴) = 𝐵)))) | 
| 22 | 21 | com12 32 | . . 3
⊢ (𝐵 ∈ ran 𝐹 → (((𝐹''''𝐴) = 𝐵 ∨ (𝐹''''𝐴) ∉ ran 𝐹) → (((𝐹''''𝐴) = 𝐵 → ¬ (𝐹''''𝐴) ∉ ran 𝐹) ∧ (¬ (𝐹''''𝐴) ∉ ran 𝐹 → (𝐹''''𝐴) = 𝐵)))) | 
| 23 |  | df-xor 1511 | . . . 4
⊢ (((𝐹''''𝐴) = 𝐵 ⊻ (𝐹''''𝐴) ∉ ran 𝐹) ↔ ¬ ((𝐹''''𝐴) = 𝐵 ↔ (𝐹''''𝐴) ∉ ran 𝐹)) | 
| 24 |  | xor3 382 | . . . 4
⊢ (¬
((𝐹''''𝐴) = 𝐵 ↔ (𝐹''''𝐴) ∉ ran 𝐹) ↔ ((𝐹''''𝐴) = 𝐵 ↔ ¬ (𝐹''''𝐴) ∉ ran 𝐹)) | 
| 25 |  | dfbi2 474 | . . . 4
⊢ (((𝐹''''𝐴) = 𝐵 ↔ ¬ (𝐹''''𝐴) ∉ ran 𝐹) ↔ (((𝐹''''𝐴) = 𝐵 → ¬ (𝐹''''𝐴) ∉ ran 𝐹) ∧ (¬ (𝐹''''𝐴) ∉ ran 𝐹 → (𝐹''''𝐴) = 𝐵))) | 
| 26 | 23, 24, 25 | 3bitri 297 | . . 3
⊢ (((𝐹''''𝐴) = 𝐵 ⊻ (𝐹''''𝐴) ∉ ran 𝐹) ↔ (((𝐹''''𝐴) = 𝐵 → ¬ (𝐹''''𝐴) ∉ ran 𝐹) ∧ (¬ (𝐹''''𝐴) ∉ ran 𝐹 → (𝐹''''𝐴) = 𝐵))) | 
| 27 | 22, 26 | imbitrrdi 252 | . 2
⊢ (𝐵 ∈ ran 𝐹 → (((𝐹''''𝐴) = 𝐵 ∨ (𝐹''''𝐴) ∉ ran 𝐹) → ((𝐹''''𝐴) = 𝐵 ⊻ (𝐹''''𝐴) ∉ ran 𝐹))) | 
| 28 |  | xoror 1517 | . 2
⊢ (((𝐹''''𝐴) = 𝐵 ⊻ (𝐹''''𝐴) ∉ ran 𝐹) → ((𝐹''''𝐴) = 𝐵 ∨ (𝐹''''𝐴) ∉ ran 𝐹)) | 
| 29 | 27, 28 | impbid1 225 | 1
⊢ (𝐵 ∈ ran 𝐹 → (((𝐹''''𝐴) = 𝐵 ∨ (𝐹''''𝐴) ∉ ran 𝐹) ↔ ((𝐹''''𝐴) = 𝐵 ⊻ (𝐹''''𝐴) ∉ ran 𝐹))) |