Proof of Theorem afv2orxorb
Step | Hyp | Ref
| Expression |
1 | | eleq1 2826 |
. . . . . . . . . . 11
⊢ (𝐵 = (𝐹''''𝐴) → (𝐵 ∈ ran 𝐹 ↔ (𝐹''''𝐴) ∈ ran 𝐹)) |
2 | 1 | eqcoms 2746 |
. . . . . . . . . 10
⊢ ((𝐹''''𝐴) = 𝐵 → (𝐵 ∈ ran 𝐹 ↔ (𝐹''''𝐴) ∈ ran 𝐹)) |
3 | 2 | biimpa 477 |
. . . . . . . . 9
⊢ (((𝐹''''𝐴) = 𝐵 ∧ 𝐵 ∈ ran 𝐹) → (𝐹''''𝐴) ∈ ran 𝐹) |
4 | | nnel 3058 |
. . . . . . . . 9
⊢ (¬
(𝐹''''𝐴) ∉ ran 𝐹 ↔ (𝐹''''𝐴) ∈ ran 𝐹) |
5 | 3, 4 | sylibr 233 |
. . . . . . . 8
⊢ (((𝐹''''𝐴) = 𝐵 ∧ 𝐵 ∈ ran 𝐹) → ¬ (𝐹''''𝐴) ∉ ran 𝐹) |
6 | 5 | a1d 25 |
. . . . . . 7
⊢ (((𝐹''''𝐴) = 𝐵 ∧ 𝐵 ∈ ran 𝐹) → ((𝐹''''𝐴) = 𝐵 → ¬ (𝐹''''𝐴) ∉ ran 𝐹)) |
7 | | simpl 483 |
. . . . . . . 8
⊢ (((𝐹''''𝐴) = 𝐵 ∧ 𝐵 ∈ ran 𝐹) → (𝐹''''𝐴) = 𝐵) |
8 | 7 | a1d 25 |
. . . . . . 7
⊢ (((𝐹''''𝐴) = 𝐵 ∧ 𝐵 ∈ ran 𝐹) → (¬ (𝐹''''𝐴) ∉ ran 𝐹 → (𝐹''''𝐴) = 𝐵)) |
9 | 6, 8 | jca 512 |
. . . . . 6
⊢ (((𝐹''''𝐴) = 𝐵 ∧ 𝐵 ∈ ran 𝐹) → (((𝐹''''𝐴) = 𝐵 → ¬ (𝐹''''𝐴) ∉ ran 𝐹) ∧ (¬ (𝐹''''𝐴) ∉ ran 𝐹 → (𝐹''''𝐴) = 𝐵))) |
10 | 9 | ex 413 |
. . . . 5
⊢ ((𝐹''''𝐴) = 𝐵 → (𝐵 ∈ ran 𝐹 → (((𝐹''''𝐴) = 𝐵 → ¬ (𝐹''''𝐴) ∉ ran 𝐹) ∧ (¬ (𝐹''''𝐴) ∉ ran 𝐹 → (𝐹''''𝐴) = 𝐵)))) |
11 | | eleq1 2826 |
. . . . . . . . . 10
⊢ ((𝐹''''𝐴) = 𝐵 → ((𝐹''''𝐴) ∈ ran 𝐹 ↔ 𝐵 ∈ ran 𝐹)) |
12 | 11 | anbi2d 629 |
. . . . . . . . 9
⊢ ((𝐹''''𝐴) = 𝐵 → (((𝐹''''𝐴) ∉ ran 𝐹 ∧ (𝐹''''𝐴) ∈ ran 𝐹) ↔ ((𝐹''''𝐴) ∉ ran 𝐹 ∧ 𝐵 ∈ ran 𝐹))) |
13 | | elnelall 3062 |
. . . . . . . . . 10
⊢ ((𝐹''''𝐴) ∈ ran 𝐹 → ((𝐹''''𝐴) ∉ ran 𝐹 → ¬ (𝐹''''𝐴) ∉ ran 𝐹)) |
14 | 13 | impcom 408 |
. . . . . . . . 9
⊢ (((𝐹''''𝐴) ∉ ran 𝐹 ∧ (𝐹''''𝐴) ∈ ran 𝐹) → ¬ (𝐹''''𝐴) ∉ ran 𝐹) |
15 | 12, 14 | syl6bir 253 |
. . . . . . . 8
⊢ ((𝐹''''𝐴) = 𝐵 → (((𝐹''''𝐴) ∉ ran 𝐹 ∧ 𝐵 ∈ ran 𝐹) → ¬ (𝐹''''𝐴) ∉ ran 𝐹)) |
16 | 15 | com12 32 |
. . . . . . 7
⊢ (((𝐹''''𝐴) ∉ ran 𝐹 ∧ 𝐵 ∈ ran 𝐹) → ((𝐹''''𝐴) = 𝐵 → ¬ (𝐹''''𝐴) ∉ ran 𝐹)) |
17 | | pm2.24 124 |
. . . . . . . 8
⊢ ((𝐹''''𝐴) ∉ ran 𝐹 → (¬ (𝐹''''𝐴) ∉ ran 𝐹 → (𝐹''''𝐴) = 𝐵)) |
18 | 17 | adantr 481 |
. . . . . . 7
⊢ (((𝐹''''𝐴) ∉ ran 𝐹 ∧ 𝐵 ∈ ran 𝐹) → (¬ (𝐹''''𝐴) ∉ ran 𝐹 → (𝐹''''𝐴) = 𝐵)) |
19 | 16, 18 | jca 512 |
. . . . . 6
⊢ (((𝐹''''𝐴) ∉ ran 𝐹 ∧ 𝐵 ∈ ran 𝐹) → (((𝐹''''𝐴) = 𝐵 → ¬ (𝐹''''𝐴) ∉ ran 𝐹) ∧ (¬ (𝐹''''𝐴) ∉ ran 𝐹 → (𝐹''''𝐴) = 𝐵))) |
20 | 19 | ex 413 |
. . . . 5
⊢ ((𝐹''''𝐴) ∉ ran 𝐹 → (𝐵 ∈ ran 𝐹 → (((𝐹''''𝐴) = 𝐵 → ¬ (𝐹''''𝐴) ∉ ran 𝐹) ∧ (¬ (𝐹''''𝐴) ∉ ran 𝐹 → (𝐹''''𝐴) = 𝐵)))) |
21 | 10, 20 | jaoi 854 |
. . . 4
⊢ (((𝐹''''𝐴) = 𝐵 ∨ (𝐹''''𝐴) ∉ ran 𝐹) → (𝐵 ∈ ran 𝐹 → (((𝐹''''𝐴) = 𝐵 → ¬ (𝐹''''𝐴) ∉ ran 𝐹) ∧ (¬ (𝐹''''𝐴) ∉ ran 𝐹 → (𝐹''''𝐴) = 𝐵)))) |
22 | 21 | com12 32 |
. . 3
⊢ (𝐵 ∈ ran 𝐹 → (((𝐹''''𝐴) = 𝐵 ∨ (𝐹''''𝐴) ∉ ran 𝐹) → (((𝐹''''𝐴) = 𝐵 → ¬ (𝐹''''𝐴) ∉ ran 𝐹) ∧ (¬ (𝐹''''𝐴) ∉ ran 𝐹 → (𝐹''''𝐴) = 𝐵)))) |
23 | | df-xor 1507 |
. . . 4
⊢ (((𝐹''''𝐴) = 𝐵 ⊻ (𝐹''''𝐴) ∉ ran 𝐹) ↔ ¬ ((𝐹''''𝐴) = 𝐵 ↔ (𝐹''''𝐴) ∉ ran 𝐹)) |
24 | | xor3 384 |
. . . 4
⊢ (¬
((𝐹''''𝐴) = 𝐵 ↔ (𝐹''''𝐴) ∉ ran 𝐹) ↔ ((𝐹''''𝐴) = 𝐵 ↔ ¬ (𝐹''''𝐴) ∉ ran 𝐹)) |
25 | | dfbi2 475 |
. . . 4
⊢ (((𝐹''''𝐴) = 𝐵 ↔ ¬ (𝐹''''𝐴) ∉ ran 𝐹) ↔ (((𝐹''''𝐴) = 𝐵 → ¬ (𝐹''''𝐴) ∉ ran 𝐹) ∧ (¬ (𝐹''''𝐴) ∉ ran 𝐹 → (𝐹''''𝐴) = 𝐵))) |
26 | 23, 24, 25 | 3bitri 297 |
. . 3
⊢ (((𝐹''''𝐴) = 𝐵 ⊻ (𝐹''''𝐴) ∉ ran 𝐹) ↔ (((𝐹''''𝐴) = 𝐵 → ¬ (𝐹''''𝐴) ∉ ran 𝐹) ∧ (¬ (𝐹''''𝐴) ∉ ran 𝐹 → (𝐹''''𝐴) = 𝐵))) |
27 | 22, 26 | syl6ibr 251 |
. 2
⊢ (𝐵 ∈ ran 𝐹 → (((𝐹''''𝐴) = 𝐵 ∨ (𝐹''''𝐴) ∉ ran 𝐹) → ((𝐹''''𝐴) = 𝐵 ⊻ (𝐹''''𝐴) ∉ ran 𝐹))) |
28 | | xoror 1514 |
. 2
⊢ (((𝐹''''𝐴) = 𝐵 ⊻ (𝐹''''𝐴) ∉ ran 𝐹) → ((𝐹''''𝐴) = 𝐵 ∨ (𝐹''''𝐴) ∉ ran 𝐹)) |
29 | 27, 28 | impbid1 224 |
1
⊢ (𝐵 ∈ ran 𝐹 → (((𝐹''''𝐴) = 𝐵 ∨ (𝐹''''𝐴) ∉ ran 𝐹) ↔ ((𝐹''''𝐴) = 𝐵 ⊻ (𝐹''''𝐴) ∉ ran 𝐹))) |