![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > oneptri | Structured version Visualization version GIF version |
Description: The strict, complete (linear) order on the ordinals is complete. Theorem 1.9(iii) of [Schloeder] p. 1. (Contributed by RP, 15-Jan-2025.) |
Ref | Expression |
---|---|
oneptri | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 E 𝐵 ∨ 𝐵 E 𝐴 ∨ 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | epsoon 42467 | . . 3 ⊢ E Or On | |
2 | sotrieq 5617 | . . 3 ⊢ (( E Or On ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) → (𝐴 = 𝐵 ↔ ¬ (𝐴 E 𝐵 ∨ 𝐵 E 𝐴))) | |
3 | 1, 2 | mpan 687 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 = 𝐵 ↔ ¬ (𝐴 E 𝐵 ∨ 𝐵 E 𝐴))) |
4 | xoror 1516 | . . 3 ⊢ (((𝐴 E 𝐵 ∨ 𝐵 E 𝐴) ⊻ 𝐴 = 𝐵) → ((𝐴 E 𝐵 ∨ 𝐵 E 𝐴) ∨ 𝐴 = 𝐵)) | |
5 | xorcom 1511 | . . . 4 ⊢ (((𝐴 E 𝐵 ∨ 𝐵 E 𝐴) ⊻ 𝐴 = 𝐵) ↔ (𝐴 = 𝐵 ⊻ (𝐴 E 𝐵 ∨ 𝐵 E 𝐴))) | |
6 | df-xor 1509 | . . . 4 ⊢ ((𝐴 = 𝐵 ⊻ (𝐴 E 𝐵 ∨ 𝐵 E 𝐴)) ↔ ¬ (𝐴 = 𝐵 ↔ (𝐴 E 𝐵 ∨ 𝐵 E 𝐴))) | |
7 | xor3 382 | . . . 4 ⊢ (¬ (𝐴 = 𝐵 ↔ (𝐴 E 𝐵 ∨ 𝐵 E 𝐴)) ↔ (𝐴 = 𝐵 ↔ ¬ (𝐴 E 𝐵 ∨ 𝐵 E 𝐴))) | |
8 | 5, 6, 7 | 3bitrri 298 | . . 3 ⊢ ((𝐴 = 𝐵 ↔ ¬ (𝐴 E 𝐵 ∨ 𝐵 E 𝐴)) ↔ ((𝐴 E 𝐵 ∨ 𝐵 E 𝐴) ⊻ 𝐴 = 𝐵)) |
9 | df-3or 1087 | . . 3 ⊢ ((𝐴 E 𝐵 ∨ 𝐵 E 𝐴 ∨ 𝐴 = 𝐵) ↔ ((𝐴 E 𝐵 ∨ 𝐵 E 𝐴) ∨ 𝐴 = 𝐵)) | |
10 | 4, 8, 9 | 3imtr4i 292 | . 2 ⊢ ((𝐴 = 𝐵 ↔ ¬ (𝐴 E 𝐵 ∨ 𝐵 E 𝐴)) → (𝐴 E 𝐵 ∨ 𝐵 E 𝐴 ∨ 𝐴 = 𝐵)) |
11 | 3, 10 | syl 17 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 E 𝐵 ∨ 𝐵 E 𝐴 ∨ 𝐴 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∨ wo 844 ∨ w3o 1085 ⊻ wxo 1508 = wceq 1540 ∈ wcel 2105 class class class wbr 5148 E cep 5579 Or wor 5587 Oncon0 6364 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-xor 1509 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-tr 5266 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-ord 6367 df-on 6368 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |