Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oneptri Structured version   Visualization version   GIF version

Theorem oneptri 43204
Description: The strict, complete (linear) order on the ordinals is complete. Theorem 1.9(iii) of [Schloeder] p. 1. (Contributed by RP, 15-Jan-2025.)
Assertion
Ref Expression
oneptri ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 E 𝐵𝐵 E 𝐴𝐴 = 𝐵))

Proof of Theorem oneptri
StepHypRef Expression
1 epsoon 43200 . . 3 E Or On
2 sotrieq 5621 . . 3 (( E Or On ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) → (𝐴 = 𝐵 ↔ ¬ (𝐴 E 𝐵𝐵 E 𝐴)))
31, 2mpan 689 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 = 𝐵 ↔ ¬ (𝐴 E 𝐵𝐵 E 𝐴)))
4 xoror 1513 . . 3 (((𝐴 E 𝐵𝐵 E 𝐴) ⊻ 𝐴 = 𝐵) → ((𝐴 E 𝐵𝐵 E 𝐴) ∨ 𝐴 = 𝐵))
5 xorcom 1509 . . . 4 (((𝐴 E 𝐵𝐵 E 𝐴) ⊻ 𝐴 = 𝐵) ↔ (𝐴 = 𝐵 ⊻ (𝐴 E 𝐵𝐵 E 𝐴)))
6 df-xor 1507 . . . 4 ((𝐴 = 𝐵 ⊻ (𝐴 E 𝐵𝐵 E 𝐴)) ↔ ¬ (𝐴 = 𝐵 ↔ (𝐴 E 𝐵𝐵 E 𝐴)))
7 xor3 382 . . . 4 (¬ (𝐴 = 𝐵 ↔ (𝐴 E 𝐵𝐵 E 𝐴)) ↔ (𝐴 = 𝐵 ↔ ¬ (𝐴 E 𝐵𝐵 E 𝐴)))
85, 6, 73bitrri 298 . . 3 ((𝐴 = 𝐵 ↔ ¬ (𝐴 E 𝐵𝐵 E 𝐴)) ↔ ((𝐴 E 𝐵𝐵 E 𝐴) ⊻ 𝐴 = 𝐵))
9 df-3or 1086 . . 3 ((𝐴 E 𝐵𝐵 E 𝐴𝐴 = 𝐵) ↔ ((𝐴 E 𝐵𝐵 E 𝐴) ∨ 𝐴 = 𝐵))
104, 8, 93imtr4i 292 . 2 ((𝐴 = 𝐵 ↔ ¬ (𝐴 E 𝐵𝐵 E 𝐴)) → (𝐴 E 𝐵𝐵 E 𝐴𝐴 = 𝐵))
113, 10syl 17 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 E 𝐵𝐵 E 𝐴𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 846  w3o 1084  wxo 1506   = wceq 1535  wcel 2104   class class class wbr 5149   E cep 5581   Or wor 5589  Oncon0 6380
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1963  ax-7 2003  ax-8 2106  ax-9 2114  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5430
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-xor 1507  df-tru 1538  df-fal 1548  df-ex 1775  df-sb 2061  df-clab 2711  df-cleq 2725  df-clel 2812  df-ne 2937  df-ral 3058  df-rex 3067  df-rab 3433  df-v 3479  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4915  df-br 5150  df-opab 5212  df-tr 5267  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5635  df-we 5637  df-ord 6383  df-on 6384
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator