![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > oneptri | Structured version Visualization version GIF version |
Description: The strict, complete (linear) order on the ordinals is complete. Theorem 1.9(iii) of [Schloeder] p. 1. (Contributed by RP, 15-Jan-2025.) |
Ref | Expression |
---|---|
oneptri | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 E 𝐵 ∨ 𝐵 E 𝐴 ∨ 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | epsoon 43209 | . . 3 ⊢ E Or On | |
2 | sotrieq 5636 | . . 3 ⊢ (( E Or On ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) → (𝐴 = 𝐵 ↔ ¬ (𝐴 E 𝐵 ∨ 𝐵 E 𝐴))) | |
3 | 1, 2 | mpan 689 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 = 𝐵 ↔ ¬ (𝐴 E 𝐵 ∨ 𝐵 E 𝐴))) |
4 | xoror 1515 | . . 3 ⊢ (((𝐴 E 𝐵 ∨ 𝐵 E 𝐴) ⊻ 𝐴 = 𝐵) → ((𝐴 E 𝐵 ∨ 𝐵 E 𝐴) ∨ 𝐴 = 𝐵)) | |
5 | xorcom 1511 | . . . 4 ⊢ (((𝐴 E 𝐵 ∨ 𝐵 E 𝐴) ⊻ 𝐴 = 𝐵) ↔ (𝐴 = 𝐵 ⊻ (𝐴 E 𝐵 ∨ 𝐵 E 𝐴))) | |
6 | df-xor 1509 | . . . 4 ⊢ ((𝐴 = 𝐵 ⊻ (𝐴 E 𝐵 ∨ 𝐵 E 𝐴)) ↔ ¬ (𝐴 = 𝐵 ↔ (𝐴 E 𝐵 ∨ 𝐵 E 𝐴))) | |
7 | xor3 382 | . . . 4 ⊢ (¬ (𝐴 = 𝐵 ↔ (𝐴 E 𝐵 ∨ 𝐵 E 𝐴)) ↔ (𝐴 = 𝐵 ↔ ¬ (𝐴 E 𝐵 ∨ 𝐵 E 𝐴))) | |
8 | 5, 6, 7 | 3bitrri 298 | . . 3 ⊢ ((𝐴 = 𝐵 ↔ ¬ (𝐴 E 𝐵 ∨ 𝐵 E 𝐴)) ↔ ((𝐴 E 𝐵 ∨ 𝐵 E 𝐴) ⊻ 𝐴 = 𝐵)) |
9 | df-3or 1088 | . . 3 ⊢ ((𝐴 E 𝐵 ∨ 𝐵 E 𝐴 ∨ 𝐴 = 𝐵) ↔ ((𝐴 E 𝐵 ∨ 𝐵 E 𝐴) ∨ 𝐴 = 𝐵)) | |
10 | 4, 8, 9 | 3imtr4i 292 | . 2 ⊢ ((𝐴 = 𝐵 ↔ ¬ (𝐴 E 𝐵 ∨ 𝐵 E 𝐴)) → (𝐴 E 𝐵 ∨ 𝐵 E 𝐴 ∨ 𝐴 = 𝐵)) |
11 | 3, 10 | syl 17 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 E 𝐵 ∨ 𝐵 E 𝐴 ∨ 𝐴 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 846 ∨ w3o 1086 ⊻ wxo 1508 = wceq 1537 ∈ wcel 2108 class class class wbr 5166 E cep 5598 Or wor 5606 Oncon0 6390 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-xor 1509 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-tr 5284 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5650 df-we 5652 df-ord 6393 df-on 6394 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |