Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oneptri Structured version   Visualization version   GIF version

Theorem oneptri 43246
Description: The strict, complete (linear) order on the ordinals is complete. Theorem 1.9(iii) of [Schloeder] p. 1. (Contributed by RP, 15-Jan-2025.)
Assertion
Ref Expression
oneptri ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 E 𝐵𝐵 E 𝐴𝐴 = 𝐵))

Proof of Theorem oneptri
StepHypRef Expression
1 epsoon 43242 . . 3 E Or On
2 sotrieq 5577 . . 3 (( E Or On ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) → (𝐴 = 𝐵 ↔ ¬ (𝐴 E 𝐵𝐵 E 𝐴)))
31, 2mpan 690 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 = 𝐵 ↔ ¬ (𝐴 E 𝐵𝐵 E 𝐴)))
4 xoror 1518 . . 3 (((𝐴 E 𝐵𝐵 E 𝐴) ⊻ 𝐴 = 𝐵) → ((𝐴 E 𝐵𝐵 E 𝐴) ∨ 𝐴 = 𝐵))
5 xorcom 1514 . . . 4 (((𝐴 E 𝐵𝐵 E 𝐴) ⊻ 𝐴 = 𝐵) ↔ (𝐴 = 𝐵 ⊻ (𝐴 E 𝐵𝐵 E 𝐴)))
6 df-xor 1512 . . . 4 ((𝐴 = 𝐵 ⊻ (𝐴 E 𝐵𝐵 E 𝐴)) ↔ ¬ (𝐴 = 𝐵 ↔ (𝐴 E 𝐵𝐵 E 𝐴)))
7 xor3 382 . . . 4 (¬ (𝐴 = 𝐵 ↔ (𝐴 E 𝐵𝐵 E 𝐴)) ↔ (𝐴 = 𝐵 ↔ ¬ (𝐴 E 𝐵𝐵 E 𝐴)))
85, 6, 73bitrri 298 . . 3 ((𝐴 = 𝐵 ↔ ¬ (𝐴 E 𝐵𝐵 E 𝐴)) ↔ ((𝐴 E 𝐵𝐵 E 𝐴) ⊻ 𝐴 = 𝐵))
9 df-3or 1087 . . 3 ((𝐴 E 𝐵𝐵 E 𝐴𝐴 = 𝐵) ↔ ((𝐴 E 𝐵𝐵 E 𝐴) ∨ 𝐴 = 𝐵))
104, 8, 93imtr4i 292 . 2 ((𝐴 = 𝐵 ↔ ¬ (𝐴 E 𝐵𝐵 E 𝐴)) → (𝐴 E 𝐵𝐵 E 𝐴𝐴 = 𝐵))
113, 10syl 17 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 E 𝐵𝐵 E 𝐴𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3o 1085  wxo 1511   = wceq 1540  wcel 2109   class class class wbr 5107   E cep 5537   Or wor 5545  Oncon0 6332
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-xor 1512  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-tr 5215  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-ord 6335  df-on 6336
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator