| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > oneptri | Structured version Visualization version GIF version | ||
| Description: The strict, complete (linear) order on the ordinals is complete. Theorem 1.9(iii) of [Schloeder] p. 1. (Contributed by RP, 15-Jan-2025.) |
| Ref | Expression |
|---|---|
| oneptri | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 E 𝐵 ∨ 𝐵 E 𝐴 ∨ 𝐴 = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | epsoon 43373 | . . 3 ⊢ E Or On | |
| 2 | sotrieq 5560 | . . 3 ⊢ (( E Or On ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) → (𝐴 = 𝐵 ↔ ¬ (𝐴 E 𝐵 ∨ 𝐵 E 𝐴))) | |
| 3 | 1, 2 | mpan 690 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 = 𝐵 ↔ ¬ (𝐴 E 𝐵 ∨ 𝐵 E 𝐴))) |
| 4 | xoror 1519 | . . 3 ⊢ (((𝐴 E 𝐵 ∨ 𝐵 E 𝐴) ⊻ 𝐴 = 𝐵) → ((𝐴 E 𝐵 ∨ 𝐵 E 𝐴) ∨ 𝐴 = 𝐵)) | |
| 5 | xorcom 1515 | . . . 4 ⊢ (((𝐴 E 𝐵 ∨ 𝐵 E 𝐴) ⊻ 𝐴 = 𝐵) ↔ (𝐴 = 𝐵 ⊻ (𝐴 E 𝐵 ∨ 𝐵 E 𝐴))) | |
| 6 | df-xor 1513 | . . . 4 ⊢ ((𝐴 = 𝐵 ⊻ (𝐴 E 𝐵 ∨ 𝐵 E 𝐴)) ↔ ¬ (𝐴 = 𝐵 ↔ (𝐴 E 𝐵 ∨ 𝐵 E 𝐴))) | |
| 7 | xor3 382 | . . . 4 ⊢ (¬ (𝐴 = 𝐵 ↔ (𝐴 E 𝐵 ∨ 𝐵 E 𝐴)) ↔ (𝐴 = 𝐵 ↔ ¬ (𝐴 E 𝐵 ∨ 𝐵 E 𝐴))) | |
| 8 | 5, 6, 7 | 3bitrri 298 | . . 3 ⊢ ((𝐴 = 𝐵 ↔ ¬ (𝐴 E 𝐵 ∨ 𝐵 E 𝐴)) ↔ ((𝐴 E 𝐵 ∨ 𝐵 E 𝐴) ⊻ 𝐴 = 𝐵)) |
| 9 | df-3or 1087 | . . 3 ⊢ ((𝐴 E 𝐵 ∨ 𝐵 E 𝐴 ∨ 𝐴 = 𝐵) ↔ ((𝐴 E 𝐵 ∨ 𝐵 E 𝐴) ∨ 𝐴 = 𝐵)) | |
| 10 | 4, 8, 9 | 3imtr4i 292 | . 2 ⊢ ((𝐴 = 𝐵 ↔ ¬ (𝐴 E 𝐵 ∨ 𝐵 E 𝐴)) → (𝐴 E 𝐵 ∨ 𝐵 E 𝐴 ∨ 𝐴 = 𝐵)) |
| 11 | 3, 10 | syl 17 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 E 𝐵 ∨ 𝐵 E 𝐴 ∨ 𝐴 = 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 ∨ w3o 1085 ⊻ wxo 1512 = wceq 1541 ∈ wcel 2113 class class class wbr 5095 E cep 5520 Or wor 5528 Oncon0 6313 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-xor 1513 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-tr 5203 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-ord 6316 df-on 6317 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |