Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oneptri Structured version   Visualization version   GIF version

Theorem oneptri 43296
Description: The strict, complete (linear) order on the ordinals is complete. Theorem 1.9(iii) of [Schloeder] p. 1. (Contributed by RP, 15-Jan-2025.)
Assertion
Ref Expression
oneptri ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 E 𝐵𝐵 E 𝐴𝐴 = 𝐵))

Proof of Theorem oneptri
StepHypRef Expression
1 epsoon 43292 . . 3 E Or On
2 sotrieq 5555 . . 3 (( E Or On ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) → (𝐴 = 𝐵 ↔ ¬ (𝐴 E 𝐵𝐵 E 𝐴)))
31, 2mpan 690 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 = 𝐵 ↔ ¬ (𝐴 E 𝐵𝐵 E 𝐴)))
4 xoror 1519 . . 3 (((𝐴 E 𝐵𝐵 E 𝐴) ⊻ 𝐴 = 𝐵) → ((𝐴 E 𝐵𝐵 E 𝐴) ∨ 𝐴 = 𝐵))
5 xorcom 1515 . . . 4 (((𝐴 E 𝐵𝐵 E 𝐴) ⊻ 𝐴 = 𝐵) ↔ (𝐴 = 𝐵 ⊻ (𝐴 E 𝐵𝐵 E 𝐴)))
6 df-xor 1513 . . . 4 ((𝐴 = 𝐵 ⊻ (𝐴 E 𝐵𝐵 E 𝐴)) ↔ ¬ (𝐴 = 𝐵 ↔ (𝐴 E 𝐵𝐵 E 𝐴)))
7 xor3 382 . . . 4 (¬ (𝐴 = 𝐵 ↔ (𝐴 E 𝐵𝐵 E 𝐴)) ↔ (𝐴 = 𝐵 ↔ ¬ (𝐴 E 𝐵𝐵 E 𝐴)))
85, 6, 73bitrri 298 . . 3 ((𝐴 = 𝐵 ↔ ¬ (𝐴 E 𝐵𝐵 E 𝐴)) ↔ ((𝐴 E 𝐵𝐵 E 𝐴) ⊻ 𝐴 = 𝐵))
9 df-3or 1087 . . 3 ((𝐴 E 𝐵𝐵 E 𝐴𝐴 = 𝐵) ↔ ((𝐴 E 𝐵𝐵 E 𝐴) ∨ 𝐴 = 𝐵))
104, 8, 93imtr4i 292 . 2 ((𝐴 = 𝐵 ↔ ¬ (𝐴 E 𝐵𝐵 E 𝐴)) → (𝐴 E 𝐵𝐵 E 𝐴𝐴 = 𝐵))
113, 10syl 17 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 E 𝐵𝐵 E 𝐴𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3o 1085  wxo 1512   = wceq 1541  wcel 2111   class class class wbr 5091   E cep 5515   Or wor 5523  Oncon0 6306
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-xor 1513  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-tr 5199  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-ord 6309  df-on 6310
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator