| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > oneptri | Structured version Visualization version GIF version | ||
| Description: The strict, complete (linear) order on the ordinals is complete. Theorem 1.9(iii) of [Schloeder] p. 1. (Contributed by RP, 15-Jan-2025.) |
| Ref | Expression |
|---|---|
| oneptri | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 E 𝐵 ∨ 𝐵 E 𝐴 ∨ 𝐴 = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | epsoon 43243 | . . 3 ⊢ E Or On | |
| 2 | sotrieq 5603 | . . 3 ⊢ (( E Or On ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) → (𝐴 = 𝐵 ↔ ¬ (𝐴 E 𝐵 ∨ 𝐵 E 𝐴))) | |
| 3 | 1, 2 | mpan 690 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 = 𝐵 ↔ ¬ (𝐴 E 𝐵 ∨ 𝐵 E 𝐴))) |
| 4 | xoror 1517 | . . 3 ⊢ (((𝐴 E 𝐵 ∨ 𝐵 E 𝐴) ⊻ 𝐴 = 𝐵) → ((𝐴 E 𝐵 ∨ 𝐵 E 𝐴) ∨ 𝐴 = 𝐵)) | |
| 5 | xorcom 1513 | . . . 4 ⊢ (((𝐴 E 𝐵 ∨ 𝐵 E 𝐴) ⊻ 𝐴 = 𝐵) ↔ (𝐴 = 𝐵 ⊻ (𝐴 E 𝐵 ∨ 𝐵 E 𝐴))) | |
| 6 | df-xor 1511 | . . . 4 ⊢ ((𝐴 = 𝐵 ⊻ (𝐴 E 𝐵 ∨ 𝐵 E 𝐴)) ↔ ¬ (𝐴 = 𝐵 ↔ (𝐴 E 𝐵 ∨ 𝐵 E 𝐴))) | |
| 7 | xor3 382 | . . . 4 ⊢ (¬ (𝐴 = 𝐵 ↔ (𝐴 E 𝐵 ∨ 𝐵 E 𝐴)) ↔ (𝐴 = 𝐵 ↔ ¬ (𝐴 E 𝐵 ∨ 𝐵 E 𝐴))) | |
| 8 | 5, 6, 7 | 3bitrri 298 | . . 3 ⊢ ((𝐴 = 𝐵 ↔ ¬ (𝐴 E 𝐵 ∨ 𝐵 E 𝐴)) ↔ ((𝐴 E 𝐵 ∨ 𝐵 E 𝐴) ⊻ 𝐴 = 𝐵)) |
| 9 | df-3or 1087 | . . 3 ⊢ ((𝐴 E 𝐵 ∨ 𝐵 E 𝐴 ∨ 𝐴 = 𝐵) ↔ ((𝐴 E 𝐵 ∨ 𝐵 E 𝐴) ∨ 𝐴 = 𝐵)) | |
| 10 | 4, 8, 9 | 3imtr4i 292 | . 2 ⊢ ((𝐴 = 𝐵 ↔ ¬ (𝐴 E 𝐵 ∨ 𝐵 E 𝐴)) → (𝐴 E 𝐵 ∨ 𝐵 E 𝐴 ∨ 𝐴 = 𝐵)) |
| 11 | 3, 10 | syl 17 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 E 𝐵 ∨ 𝐵 E 𝐴 ∨ 𝐴 = 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 ∨ w3o 1085 ⊻ wxo 1510 = wceq 1539 ∈ wcel 2107 class class class wbr 5123 E cep 5563 Or wor 5571 Oncon0 6363 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-xor 1511 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-tr 5240 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-ord 6366 df-on 6367 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |