| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xor2 | Structured version Visualization version GIF version | ||
| Description: Two ways to express "exclusive or". (Contributed by Mario Carneiro, 4-Sep-2016.) |
| Ref | Expression |
|---|---|
| xor2 | ⊢ ((𝜑 ⊻ 𝜓) ↔ ((𝜑 ∨ 𝜓) ∧ ¬ (𝜑 ∧ 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-xor 1512 | . 2 ⊢ ((𝜑 ⊻ 𝜓) ↔ ¬ (𝜑 ↔ 𝜓)) | |
| 2 | nbi2 1018 | . 2 ⊢ (¬ (𝜑 ↔ 𝜓) ↔ ((𝜑 ∨ 𝜓) ∧ ¬ (𝜑 ∧ 𝜓))) | |
| 3 | 1, 2 | bitri 275 | 1 ⊢ ((𝜑 ⊻ 𝜓) ↔ ((𝜑 ∨ 𝜓) ∧ ¬ (𝜑 ∧ 𝜓))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 ∨ wo 848 ⊻ wxo 1511 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-xor 1512 |
| This theorem is referenced by: xoror 1518 xornan 1519 cador 1608 saddisjlem 16501 wl-df4-3mintru2 37488 ifpdfxor 43500 dfxor4 43779 nanorxor 44324 |
| Copyright terms: Public domain | W3C validator |