MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xor2 Structured version   Visualization version   GIF version

Theorem xor2 1510
Description: Two ways to express "exclusive or". (Contributed by Mario Carneiro, 4-Sep-2016.)
Assertion
Ref Expression
xor2 ((𝜑𝜓) ↔ ((𝜑𝜓) ∧ ¬ (𝜑𝜓)))

Proof of Theorem xor2
StepHypRef Expression
1 df-xor 1504 . 2 ((𝜑𝜓) ↔ ¬ (𝜑𝜓))
2 nbi2 1012 . 2 (¬ (𝜑𝜓) ↔ ((𝜑𝜓) ∧ ¬ (𝜑𝜓)))
31, 2bitri 274 1 ((𝜑𝜓) ↔ ((𝜑𝜓) ∧ ¬ (𝜑𝜓)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wa 395  wo 843  wxo 1503
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-xor 1504
This theorem is referenced by:  xoror  1511  xornan  1512  cador  1611  saddisjlem  16099  wl-df4-3mintru2  35585  ifpdfxor  40992  dfxor4  41263  nanorxor  41812
  Copyright terms: Public domain W3C validator