![]() |
New Foundations Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > NFE Home > Th. List > 2alimi | Unicode version |
Description: Inference doubly quantifying both antecedent and consequent. (Contributed by NM, 3-Feb-2005.) |
Ref | Expression |
---|---|
alimi.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
2alimi |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alimi.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | alimi 1559 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | 2 | alimi 1559 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-gen 1546 ax-5 1557 |
This theorem is referenced by: mo 2226 2mo 2282 2eu6 2289 euind 3024 reuind 3040 sbnfc2 3197 spfininduct 4541 opelopabt 4700 fvopab4t 5386 fnoprabg 5586 |
Copyright terms: Public domain | W3C validator |