| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > mo | Unicode version | ||
| Description: Equivalent definitions of "there exists at most one." (Contributed by NM, 7-Aug-1994.) (Revised by Mario Carneiro, 7-Oct-2016.) | 
| Ref | Expression | 
|---|---|
| mo.1 | 
 | 
| Ref | Expression | 
|---|---|
| mo | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | mo.1 | 
. . . . . 6
 | |
| 2 | nfv 1619 | 
. . . . . 6
 | |
| 3 | 1, 2 | nfim 1813 | 
. . . . 5
 | 
| 4 | 3 | nfal 1842 | 
. . . 4
 | 
| 5 | nfv 1619 | 
. . . 4
 | |
| 6 | equequ2 1686 | 
. . . . . 6
 | |
| 7 | 6 | imbi2d 307 | 
. . . . 5
 | 
| 8 | 7 | albidv 1625 | 
. . . 4
 | 
| 9 | 4, 5, 8 | cbvex 1985 | 
. . 3
 | 
| 10 | 1 | nfs1 2044 | 
. . . . . . . . 9
 | 
| 11 | nfv 1619 | 
. . . . . . . . 9
 | |
| 12 | 10, 11 | nfim 1813 | 
. . . . . . . 8
 | 
| 13 | sbequ2 1650 | 
. . . . . . . . 9
 | |
| 14 | ax-8 1675 | 
. . . . . . . . 9
 | |
| 15 | 13, 14 | imim12d 68 | 
. . . . . . . 8
 | 
| 16 | 3, 12, 15 | cbv3 1982 | 
. . . . . . 7
 | 
| 17 | 16 | ancli 534 | 
. . . . . 6
 | 
| 18 | 3, 12 | aaan 1884 | 
. . . . . 6
 | 
| 19 | 17, 18 | sylibr 203 | 
. . . . 5
 | 
| 20 | prth 554 | 
. . . . . . 7
 | |
| 21 | equtr2 1688 | 
. . . . . . 7
 | |
| 22 | 20, 21 | syl6 29 | 
. . . . . 6
 | 
| 23 | 22 | 2alimi 1560 | 
. . . . 5
 | 
| 24 | 19, 23 | syl 15 | 
. . . 4
 | 
| 25 | 24 | exlimiv 1634 | 
. . 3
 | 
| 26 | 9, 25 | sylbir 204 | 
. 2
 | 
| 27 | nfa2 1855 | 
. . . 4
 | |
| 28 | sp 1747 | 
. . . . . . . 8
 | |
| 29 | 28 | exp3a 425 | 
. . . . . . 7
 | 
| 30 | 29 | com3r 73 | 
. . . . . 6
 | 
| 31 | 10, 30 | alimd 1764 | 
. . . . 5
 | 
| 32 | 31 | com12 27 | 
. . . 4
 | 
| 33 | 27, 32 | eximd 1770 | 
. . 3
 | 
| 34 | alnex 1543 | 
. . . 4
 | |
| 35 | 10 | nfn 1793 | 
. . . . . 6
 | 
| 36 | 1 | nfn 1793 | 
. . . . . 6
 | 
| 37 | sbequ1 1918 | 
. . . . . . . 8
 | |
| 38 | 37 | equcoms 1681 | 
. . . . . . 7
 | 
| 39 | 38 | con3d 125 | 
. . . . . 6
 | 
| 40 | 35, 36, 39 | cbv3 1982 | 
. . . . 5
 | 
| 41 | pm2.21 100 | 
. . . . . 6
 | |
| 42 | 41 | alimi 1559 | 
. . . . 5
 | 
| 43 | 19.8a 1756 | 
. . . . 5
 | |
| 44 | 40, 42, 43 | 3syl 18 | 
. . . 4
 | 
| 45 | 34, 44 | sylbir 204 | 
. . 3
 | 
| 46 | 33, 45 | pm2.61d1 151 | 
. 2
 | 
| 47 | 26, 46 | impbii 180 | 
1
 | 
| Colors of variables: wff setvar class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 | 
| This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 | 
| This theorem is referenced by: eu2 2229 eu3 2230 mo3 2235 | 
| Copyright terms: Public domain | W3C validator |