NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  mo Unicode version

Theorem mo 2226
Description: Equivalent definitions of "there exists at most one." (Contributed by NM, 7-Aug-1994.) (Revised by Mario Carneiro, 7-Oct-2016.)
Hypothesis
Ref Expression
mo.1  F/
Assertion
Ref Expression
mo
Distinct variable group:   ,
Allowed substitution hints:   (,)

Proof of Theorem mo
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 mo.1 . . . . . 6  F/
2 nfv 1619 . . . . . 6  F/
31, 2nfim 1813 . . . . 5  F/
43nfal 1842 . . . 4  F/
5 nfv 1619 . . . 4  F/
6 equequ2 1686 . . . . . 6
76imbi2d 307 . . . . 5
87albidv 1625 . . . 4
94, 5, 8cbvex 1985 . . 3
101nfs1 2044 . . . . . . . . 9  F/
11 nfv 1619 . . . . . . . . 9  F/
1210, 11nfim 1813 . . . . . . . 8  F/
13 sbequ2 1650 . . . . . . . . 9
14 ax-8 1675 . . . . . . . . 9
1513, 14imim12d 68 . . . . . . . 8
163, 12, 15cbv3 1982 . . . . . . 7
1716ancli 534 . . . . . 6
183, 12aaan 1884 . . . . . 6
1917, 18sylibr 203 . . . . 5
20 prth 554 . . . . . . 7
21 equtr2 1688 . . . . . . 7
2220, 21syl6 29 . . . . . 6
23222alimi 1560 . . . . 5
2419, 23syl 15 . . . 4
2524exlimiv 1634 . . 3
269, 25sylbir 204 . 2
27 nfa2 1855 . . . 4  F/
28 sp 1747 . . . . . . . 8
2928exp3a 425 . . . . . . 7
3029com3r 73 . . . . . 6
3110, 30alimd 1764 . . . . 5
3231com12 27 . . . 4
3327, 32eximd 1770 . . 3
34 alnex 1543 . . . 4
3510nfn 1793 . . . . . 6  F/
361nfn 1793 . . . . . 6  F/
37 sbequ1 1918 . . . . . . . 8
3837equcoms 1681 . . . . . . 7
3938con3d 125 . . . . . 6
4035, 36, 39cbv3 1982 . . . . 5
41 pm2.21 100 . . . . . 6
4241alimi 1559 . . . . 5
43 19.8a 1756 . . . . 5
4440, 42, 433syl 18 . . . 4
4534, 44sylbir 204 . . 3
4633, 45pm2.61d1 151 . 2
4726, 46impbii 180 1
Colors of variables: wff setvar class
Syntax hints:   wn 3   wi 4   wb 176   wa 358  wal 1540  wex 1541   F/wnf 1544   wceq 1642  wsb 1648
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925
This theorem depends on definitions:  df-bi 177  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649
This theorem is referenced by:  eu2  2229  eu3  2230  mo3  2235
  Copyright terms: Public domain W3C validator