New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > mo | Unicode version |
Description: Equivalent definitions of "there exists at most one." (Contributed by NM, 7-Aug-1994.) (Revised by Mario Carneiro, 7-Oct-2016.) |
Ref | Expression |
---|---|
mo.1 |
Ref | Expression |
---|---|
mo |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mo.1 | . . . . . 6 | |
2 | nfv 1619 | . . . . . 6 | |
3 | 1, 2 | nfim 1813 | . . . . 5 |
4 | 3 | nfal 1842 | . . . 4 |
5 | nfv 1619 | . . . 4 | |
6 | equequ2 1686 | . . . . . 6 | |
7 | 6 | imbi2d 307 | . . . . 5 |
8 | 7 | albidv 1625 | . . . 4 |
9 | 4, 5, 8 | cbvex 1985 | . . 3 |
10 | 1 | nfs1 2044 | . . . . . . . . 9 |
11 | nfv 1619 | . . . . . . . . 9 | |
12 | 10, 11 | nfim 1813 | . . . . . . . 8 |
13 | sbequ2 1650 | . . . . . . . . 9 | |
14 | ax-8 1675 | . . . . . . . . 9 | |
15 | 13, 14 | imim12d 68 | . . . . . . . 8 |
16 | 3, 12, 15 | cbv3 1982 | . . . . . . 7 |
17 | 16 | ancli 534 | . . . . . 6 |
18 | 3, 12 | aaan 1884 | . . . . . 6 |
19 | 17, 18 | sylibr 203 | . . . . 5 |
20 | prth 554 | . . . . . . 7 | |
21 | equtr2 1688 | . . . . . . 7 | |
22 | 20, 21 | syl6 29 | . . . . . 6 |
23 | 22 | 2alimi 1560 | . . . . 5 |
24 | 19, 23 | syl 15 | . . . 4 |
25 | 24 | exlimiv 1634 | . . 3 |
26 | 9, 25 | sylbir 204 | . 2 |
27 | nfa2 1855 | . . . 4 | |
28 | sp 1747 | . . . . . . . 8 | |
29 | 28 | exp3a 425 | . . . . . . 7 |
30 | 29 | com3r 73 | . . . . . 6 |
31 | 10, 30 | alimd 1764 | . . . . 5 |
32 | 31 | com12 27 | . . . 4 |
33 | 27, 32 | eximd 1770 | . . 3 |
34 | alnex 1543 | . . . 4 | |
35 | 10 | nfn 1793 | . . . . . 6 |
36 | 1 | nfn 1793 | . . . . . 6 |
37 | sbequ1 1918 | . . . . . . . 8 | |
38 | 37 | equcoms 1681 | . . . . . . 7 |
39 | 38 | con3d 125 | . . . . . 6 |
40 | 35, 36, 39 | cbv3 1982 | . . . . 5 |
41 | pm2.21 100 | . . . . . 6 | |
42 | 41 | alimi 1559 | . . . . 5 |
43 | 19.8a 1756 | . . . . 5 | |
44 | 40, 42, 43 | 3syl 18 | . . . 4 |
45 | 34, 44 | sylbir 204 | . . 3 |
46 | 33, 45 | pm2.61d1 151 | . 2 |
47 | 26, 46 | impbii 180 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wn 3 wi 4 wb 176 wa 358 wal 1540 wex 1541 wnf 1544 wceq 1642 wsb 1648 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 |
This theorem is referenced by: eu2 2229 eu3 2230 mo3 2235 |
Copyright terms: Public domain | W3C validator |