| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > euind | Unicode version | ||
| Description: Existential uniqueness via an indirect equality. (Contributed by NM, 11-Oct-2010.) |
| Ref | Expression |
|---|---|
| euind.1 |
|
| euind.2 |
|
| euind.3 |
|
| Ref | Expression |
|---|---|
| euind |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | euind.2 |
. . . . . 6
| |
| 2 | 1 | cbvexv 2003 |
. . . . 5
|
| 3 | euind.1 |
. . . . . . . . 9
| |
| 4 | 3 | isseti 2866 |
. . . . . . . 8
|
| 5 | 4 | biantrur 492 |
. . . . . . 7
|
| 6 | 5 | exbii 1582 |
. . . . . 6
|
| 7 | 19.41v 1901 |
. . . . . . . 8
| |
| 8 | 7 | exbii 1582 |
. . . . . . 7
|
| 9 | excom 1741 |
. . . . . . 7
| |
| 10 | 8, 9 | bitr3i 242 |
. . . . . 6
|
| 11 | 6, 10 | bitri 240 |
. . . . 5
|
| 12 | 2, 11 | bitri 240 |
. . . 4
|
| 13 | eqeq2 2362 |
. . . . . . . . 9
| |
| 14 | 13 | imim2i 13 |
. . . . . . . 8
|
| 15 | bi2 189 |
. . . . . . . . . 10
| |
| 16 | 15 | imim2i 13 |
. . . . . . . . 9
|
| 17 | an31 775 |
. . . . . . . . . . 11
| |
| 18 | 17 | imbi1i 315 |
. . . . . . . . . 10
|
| 19 | impexp 433 |
. . . . . . . . . 10
| |
| 20 | impexp 433 |
. . . . . . . . . 10
| |
| 21 | 18, 19, 20 | 3bitr3i 266 |
. . . . . . . . 9
|
| 22 | 16, 21 | sylib 188 |
. . . . . . . 8
|
| 23 | 14, 22 | syl 15 |
. . . . . . 7
|
| 24 | 23 | 2alimi 1560 |
. . . . . 6
|
| 25 | 19.23v 1891 |
. . . . . . . 8
| |
| 26 | 25 | albii 1566 |
. . . . . . 7
|
| 27 | 19.21v 1890 |
. . . . . . 7
| |
| 28 | 26, 27 | bitri 240 |
. . . . . 6
|
| 29 | 24, 28 | sylib 188 |
. . . . 5
|
| 30 | 29 | eximdv 1622 |
. . . 4
|
| 31 | 12, 30 | syl5bi 208 |
. . 3
|
| 32 | 31 | imp 418 |
. 2
|
| 33 | pm4.24 624 |
. . . . . . . 8
| |
| 34 | 33 | biimpi 186 |
. . . . . . 7
|
| 35 | prth 554 |
. . . . . . 7
| |
| 36 | eqtr3 2372 |
. . . . . . 7
| |
| 37 | 34, 35, 36 | syl56 30 |
. . . . . 6
|
| 38 | 37 | alanimi 1562 |
. . . . 5
|
| 39 | 19.23v 1891 |
. . . . . . 7
| |
| 40 | 39 | biimpi 186 |
. . . . . 6
|
| 41 | 40 | com12 27 |
. . . . 5
|
| 42 | 38, 41 | syl5 28 |
. . . 4
|
| 43 | 42 | alrimivv 1632 |
. . 3
|
| 44 | 43 | adantl 452 |
. 2
|
| 45 | eqeq1 2359 |
. . . . 5
| |
| 46 | 45 | imbi2d 307 |
. . . 4
|
| 47 | 46 | albidv 1625 |
. . 3
|
| 48 | 47 | eu4 2243 |
. 2
|
| 49 | 32, 44, 48 | sylanbrc 645 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-v 2862 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |