NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  sbnfc2 Unicode version

Theorem sbnfc2 3197
Description: Two ways of expressing " is (effectively) not free in ." (Contributed by Mario Carneiro, 14-Oct-2016.)
Assertion
Ref Expression
sbnfc2  F/_
Distinct variable groups:   ,,   ,,
Allowed substitution hint:   ()

Proof of Theorem sbnfc2
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 vex 2863 . . . . 5
2 csbtt 3149 . . . . 5  F/_
31, 2mpan 651 . . . 4  F/_
4 vex 2863 . . . . 5
5 csbtt 3149 . . . . 5  F/_
64, 5mpan 651 . . . 4  F/_
73, 6eqtr4d 2388 . . 3  F/_
87alrimivv 1632 . 2  F/_
9 nfv 1619 . . 3  F/
10 eleq2 2414 . . . . . 6
11 sbsbc 3051 . . . . . . 7  [.  ].
12 sbcel2g 3158 . . . . . . . 8  [.  ].
131, 12ax-mp 5 . . . . . . 7  [.  ].
1411, 13bitri 240 . . . . . 6
15 sbsbc 3051 . . . . . . 7  [.  ].
16 sbcel2g 3158 . . . . . . . 8  [.  ].
174, 16ax-mp 5 . . . . . . 7  [.  ].
1815, 17bitri 240 . . . . . 6
1910, 14, 183bitr4g 279 . . . . 5
20192alimi 1560 . . . 4
21 sbnf2 2108 . . . 4  F/
2220, 21sylibr 203 . . 3  F/
239, 22nfcd 2485 . 2  F/_
248, 23impbii 180 1  F/_
Colors of variables: wff setvar class
Syntax hints:   wb 176  wal 1540   F/wnf 1544   wceq 1642  wsb 1648   wcel 1710   F/_wnfc 2477  cvv 2860   [.wsbc 3047  csb 3137
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-v 2862  df-sbc 3048  df-csb 3138
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator