New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > addcid2 | Unicode version |
Description: Cardinal zero is a fixed point for cardinal addition. Theorem X.1.8 of [Rosser] p. 276. (Contributed by SF, 16-Jan-2015.) |
Ref | Expression |
---|---|
addcid2 | 0c |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | addccom 4406 | . 2 0c 0c | |
2 | addcid1 4405 | . 2 0c | |
3 | 1, 2 | eqtri 2373 | 1 0c |
Colors of variables: wff setvar class |
Syntax hints: wceq 1642 0cc0c 4374 cplc 4375 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4078 ax-sn 4087 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-ne 2518 df-ral 2619 df-rex 2620 df-v 2861 df-sbc 3047 df-nin 3211 df-compl 3212 df-in 3213 df-un 3214 df-dif 3215 df-symdif 3216 df-ss 3259 df-nul 3551 df-pw 3724 df-sn 3741 df-pr 3742 df-opk 4058 df-1c 4136 df-pw1 4137 df-ins2k 4187 df-ins3k 4188 df-imak 4189 df-sik 4192 df-ssetk 4193 df-0c 4377 df-addc 4378 |
This theorem is referenced by: nnsucelr 4428 preaddccan2 4455 0cminle 4461 tfin1c 4499 0ceven 4505 evenodddisj 4516 addceq0 6219 1ne0c 6241 addccan2nc 6265 nncdiv3 6277 nnc3n3p1 6278 nchoicelem14 6302 nchoicelem17 6305 |
Copyright terms: Public domain | W3C validator |