New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > addcid2 | GIF version |
Description: Cardinal zero is a fixed point for cardinal addition. Theorem X.1.8 of [Rosser] p. 276. (Contributed by SF, 16-Jan-2015.) |
Ref | Expression |
---|---|
addcid2 | ⊢ (0c +c A) = A |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | addccom 4407 | . 2 ⊢ (0c +c A) = (A +c 0c) | |
2 | addcid1 4406 | . 2 ⊢ (A +c 0c) = A | |
3 | 1, 2 | eqtri 2373 | 1 ⊢ (0c +c A) = A |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1642 0cc0c 4375 +c cplc 4376 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-nul 3552 df-pw 3725 df-sn 3742 df-pr 3743 df-opk 4059 df-1c 4137 df-pw1 4138 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-sik 4193 df-ssetk 4194 df-0c 4378 df-addc 4379 |
This theorem is referenced by: nnsucelr 4429 preaddccan2 4456 0cminle 4462 tfin1c 4500 0ceven 4506 evenodddisj 4517 addceq0 6220 1ne0c 6242 addccan2nc 6266 nncdiv3 6278 nnc3n3p1 6279 nchoicelem14 6303 nchoicelem17 6306 |
Copyright terms: Public domain | W3C validator |