| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > addceq0 | Unicode version | ||
| Description: The sum of two cardinals is zero iff both addends are zero. (Contributed by SF, 12-Mar-2015.) | 
| Ref | Expression | 
|---|---|
| addceq0 | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ianor 474 | 
. . . 4
 | |
| 2 | nc0suc 6218 | 
. . . . . . . 8
 | |
| 3 | 2 | ord 366 | 
. . . . . . 7
 | 
| 4 | 3 | adantr 451 | 
. . . . . 6
 | 
| 5 | addc32 4417 | 
. . . . . . . . 9
 | |
| 6 | 0cnsuc 4402 | 
. . . . . . . . 9
 | |
| 7 | 5, 6 | eqnetri 2534 | 
. . . . . . . 8
 | 
| 8 | addceq1 4384 | 
. . . . . . . . . 10
 | |
| 9 | 8 | eqeq1d 2361 | 
. . . . . . . . 9
 | 
| 10 | 9 | necon3bbid 2551 | 
. . . . . . . 8
 | 
| 11 | 7, 10 | mpbiri 224 | 
. . . . . . 7
 | 
| 12 | 11 | rexlimivw 2735 | 
. . . . . 6
 | 
| 13 | 4, 12 | syl6 29 | 
. . . . 5
 | 
| 14 | nc0suc 6218 | 
. . . . . . . 8
 | |
| 15 | 14 | ord 366 | 
. . . . . . 7
 | 
| 16 | 15 | adantl 452 | 
. . . . . 6
 | 
| 17 | addcass 4416 | 
. . . . . . . . 9
 | |
| 18 | 0cnsuc 4402 | 
. . . . . . . . 9
 | |
| 19 | 17, 18 | eqnetrri 2536 | 
. . . . . . . 8
 | 
| 20 | addceq2 4385 | 
. . . . . . . . . 10
 | |
| 21 | 20 | eqeq1d 2361 | 
. . . . . . . . 9
 | 
| 22 | 21 | necon3bbid 2551 | 
. . . . . . . 8
 | 
| 23 | 19, 22 | mpbiri 224 | 
. . . . . . 7
 | 
| 24 | 23 | rexlimivw 2735 | 
. . . . . 6
 | 
| 25 | 16, 24 | syl6 29 | 
. . . . 5
 | 
| 26 | 13, 25 | jaod 369 | 
. . . 4
 | 
| 27 | 1, 26 | syl5bi 208 | 
. . 3
 | 
| 28 | 27 | con4d 97 | 
. 2
 | 
| 29 | addceq12 4386 | 
. . 3
 | |
| 30 | addcid2 4408 | 
. . 3
 | |
| 31 | 29, 30 | syl6eq 2401 | 
. 2
 | 
| 32 | 28, 31 | impbid1 194 | 
1
 | 
| Colors of variables: wff setvar class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 | 
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 df-rab 2624 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-pss 3262 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-0c 4378 df-addc 4379 df-nnc 4380 df-fin 4381 df-lefin 4441 df-ltfin 4442 df-ncfin 4443 df-tfin 4444 df-evenfin 4445 df-oddfin 4446 df-sfin 4447 df-spfin 4448 df-phi 4566 df-op 4567 df-proj1 4568 df-proj2 4569 df-opab 4624 df-br 4641 df-1st 4724 df-swap 4725 df-sset 4726 df-co 4727 df-ima 4728 df-si 4729 df-id 4768 df-xp 4785 df-cnv 4786 df-rn 4787 df-dm 4788 df-res 4789 df-fun 4790 df-fn 4791 df-f 4792 df-f1 4793 df-fo 4794 df-f1o 4795 df-fv 4796 df-2nd 4798 df-txp 5737 df-ins2 5751 df-ins3 5753 df-image 5755 df-ins4 5757 df-si3 5759 df-funs 5761 df-fns 5763 df-trans 5900 df-sym 5909 df-er 5910 df-ec 5948 df-qs 5952 df-en 6030 df-ncs 6099 df-lec 6100 df-nc 6102 | 
| This theorem is referenced by: nnc3n3p1 6279 | 
| Copyright terms: Public domain | W3C validator |