NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  nchoicelem14 Unicode version

Theorem nchoicelem14 6303
Description: Lemma for nchoice 6309. When the special set generator yields a singleton, then the cardinal is not raisable. (Contributed by SF, 19-Mar-2015.)
Assertion
Ref Expression
nchoicelem14 NC Nc Spac 1c c 0c NC

Proof of Theorem nchoicelem14
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 nchoicelem5 6294 . . . . . . . . 9 NC c 0c NC Spac 2cc
2 incom 3449 . . . . . . . . . . 11 Spac 2cc Spac 2cc
32eqeq1i 2360 . . . . . . . . . 10 Spac 2cc Spac 2cc
4 disjsn 3787 . . . . . . . . . 10 Spac 2cc Spac 2cc
53, 4bitri 240 . . . . . . . . 9 Spac 2cc Spac 2cc
61, 5sylibr 203 . . . . . . . 8 NC c 0c NC Spac 2cc
7 snex 4112 . . . . . . . . 9
8 fvex 5340 . . . . . . . . 9 Spac 2cc
97, 8ncdisjun 6137 . . . . . . . 8 Spac 2cc Nc Spac 2cc Nc Nc Spac 2cc
106, 9syl 15 . . . . . . 7 NC c 0c NC Nc Spac 2cc Nc Nc Spac 2cc
11 df1c3g 6142 . . . . . . . . . . 11 NC 1c Nc
1211adantr 451 . . . . . . . . . 10 NC c 0c NC 1c Nc
1312addceq2d 4391 . . . . . . . . 9 NC c 0c NC Nc Spac 2cc 1c Nc Spac 2cc Nc
14 addccom 4407 . . . . . . . . 9 Nc Nc Spac 2cc Nc Spac 2cc Nc
1513, 14syl6reqr 2404 . . . . . . . 8 NC c 0c NC Nc Nc Spac 2cc Nc Spac 2cc 1c
16 2nnc 6168 . . . . . . . . . . 11 2c Nn
17 ceclnn1 6190 . . . . . . . . . . 11 2c Nn NC c 0c NC 2cc NC
1816, 17mp3an1 1264 . . . . . . . . . 10 NC c 0c NC 2cc NC
19 nchoicelem13 6302 . . . . . . . . . 10 2cc NC 1c <_c Nc Spac 2cc
20 1cnc 6140 . . . . . . . . . . . 12 1c NC
218ncelncsi 6122 . . . . . . . . . . . 12 Nc Spac 2cc NC
22 dflec2 6211 . . . . . . . . . . . 12 1c NC Nc Spac 2cc NC 1c <_c Nc Spac 2cc NC Nc Spac 2cc 1c
2320, 21, 22mp2an 653 . . . . . . . . . . 11 1c <_c Nc Spac 2cc NC Nc Spac 2cc 1c
24 addccom 4407 . . . . . . . . . . . . . 14 1c 1c
25 0cnsuc 4402 . . . . . . . . . . . . . 14 1c 0c
2624, 25eqnetri 2534 . . . . . . . . . . . . 13 1c 0c
27 neeq1 2525 . . . . . . . . . . . . 13 Nc Spac 2cc 1c Nc Spac 2cc 0c 1c 0c
2826, 27mpbiri 224 . . . . . . . . . . . 12 Nc Spac 2cc 1c Nc Spac 2cc 0c
2928rexlimivw 2735 . . . . . . . . . . 11 NC Nc Spac 2cc 1c Nc Spac 2cc 0c
3023, 29sylbi 187 . . . . . . . . . 10 1c <_c Nc Spac 2cc Nc Spac 2cc 0c
3118, 19, 303syl 18 . . . . . . . . 9 NC c 0c NC Nc Spac 2cc 0c
32 0cnc 6139 . . . . . . . . . . 11 0c NC
33 peano4nc 6151 . . . . . . . . . . 11 Nc Spac 2cc NC 0c NC Nc Spac 2cc 1c 0c 1c Nc Spac 2cc 0c
3421, 32, 33mp2an 653 . . . . . . . . . 10 Nc Spac 2cc 1c 0c 1c Nc Spac 2cc 0c
3534necon3bii 2549 . . . . . . . . 9 Nc Spac 2cc 1c 0c 1c Nc Spac 2cc 0c
3631, 35sylibr 203 . . . . . . . 8 NC c 0c NC Nc Spac 2cc 1c 0c 1c
3715, 36eqnetrd 2535 . . . . . . 7 NC c 0c NC Nc Nc Spac 2cc 0c 1c
3810, 37eqnetrd 2535 . . . . . 6 NC c 0c NC Nc Spac 2cc 0c 1c
39 addcid2 4408 . . . . . . . 8 0c 1c 1c
4039neeq2i 2528 . . . . . . 7 Nc Spac 2cc 0c 1c Nc Spac 2cc 1c
41 df-ne 2519 . . . . . . 7 Nc Spac 2cc 1c Nc Spac 2cc 1c
4240, 41bitri 240 . . . . . 6 Nc Spac 2cc 0c 1c Nc Spac 2cc 1c
4338, 42sylib 188 . . . . 5 NC c 0c NC Nc Spac 2cc 1c
44 nchoicelem6 6295 . . . . . . 7 NC c 0c NC Spac Spac 2cc
4544nceqd 6111 . . . . . 6 NC c 0c NC Nc Spac Nc Spac 2cc
4645eqeq1d 2361 . . . . 5 NC c 0c NC Nc Spac 1c Nc Spac 2cc 1c
4743, 46mtbird 292 . . . 4 NC c 0c NC Nc Spac 1c
4847ex 423 . . 3 NC c 0c NC Nc Spac 1c
4948con2d 107 . 2 NC Nc Spac 1c c 0c NC
5049imp 418 1 NC Nc Spac 1c c 0c NC
Colors of variables: wff setvar class
Syntax hints:   wn 3   wi 4   wb 176   wa 358   wceq 1642   wcel 1710   wne 2517  wrex 2616   cun 3208   cin 3209  c0 3551  csn 3738  1cc1c 4135   Nn cnnc 4374  0cc0c 4375   cplc 4376   class class class wbr 4640  cfv 4782  (class class class)co 5526   NC cncs 6089   <_c clec 6090   Nc cnc 6092  2cc2c 6095   ↑c cce 6097   Spac cspac 6274
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-reu 2622  df-rmo 2623  df-rab 2624  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-pss 3262  df-nul 3552  df-if 3664  df-pw 3725  df-sn 3742  df-pr 3743  df-uni 3893  df-int 3928  df-opk 4059  df-1c 4137  df-pw1 4138  df-uni1 4139  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191  df-p6 4192  df-sik 4193  df-ssetk 4194  df-imagek 4195  df-idk 4196  df-iota 4340  df-0c 4378  df-addc 4379  df-nnc 4380  df-fin 4381  df-lefin 4441  df-ltfin 4442  df-ncfin 4443  df-tfin 4444  df-evenfin 4445  df-oddfin 4446  df-sfin 4447  df-spfin 4448  df-phi 4566  df-op 4567  df-proj1 4568  df-proj2 4569  df-opab 4624  df-br 4641  df-1st 4724  df-swap 4725  df-sset 4726  df-co 4727  df-ima 4728  df-si 4729  df-id 4768  df-xp 4785  df-cnv 4786  df-rn 4787  df-dm 4788  df-res 4789  df-fun 4790  df-fn 4791  df-f 4792  df-f1 4793  df-fo 4794  df-f1o 4795  df-fv 4796  df-2nd 4798  df-ov 5527  df-oprab 5529  df-mpt 5653  df-mpt2 5655  df-txp 5737  df-fix 5741  df-compose 5749  df-ins2 5751  df-ins3 5753  df-image 5755  df-ins4 5757  df-si3 5759  df-funs 5761  df-fns 5763  df-pw1fn 5767  df-fullfun 5769  df-clos1 5874  df-trans 5900  df-sym 5909  df-er 5910  df-ec 5948  df-qs 5952  df-map 6002  df-en 6030  df-ncs 6099  df-lec 6100  df-ltc 6101  df-nc 6102  df-2c 6105  df-ce 6107  df-spac 6275
This theorem is referenced by:  nchoicelem17  6306
  Copyright terms: Public domain W3C validator