![]() |
New Foundations Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > NFE Home > Th. List > 0ceven | Unicode version |
Description: Cardinal zero is even. (Contributed by SF, 20-Jan-2015.) |
Ref | Expression |
---|---|
0ceven |
![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | peano1 4403 |
. . 3
![]() ![]() | |
2 | addcid2 4408 |
. . . 4
![]() ![]() ![]() ![]() ![]() | |
3 | 2 | eqcomi 2357 |
. . 3
![]() ![]() ![]() ![]() ![]() |
4 | addceq12 4386 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 4 | anidms 626 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6 | 5 | eqeq2d 2364 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7 | 6 | rspcev 2956 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
8 | 1, 3, 7 | mp2an 653 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
9 | 0ex 4111 |
. . . . 5
![]() ![]() ![]() ![]() | |
10 | 9 | snid 3761 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() |
11 | df-0c 4378 |
. . . 4
![]() ![]() ![]() ![]() ![]() | |
12 | 10, 11 | eleqtrri 2426 |
. . 3
![]() ![]() ![]() |
13 | ne0i 3557 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
14 | 12, 13 | ax-mp 5 |
. 2
![]() ![]() ![]() |
15 | 0cex 4393 |
. . 3
![]() ![]() ![]() | |
16 | eqeq1 2359 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
17 | 16 | rexbidv 2636 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
18 | neeq1 2525 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
19 | 17, 18 | anbi12d 691 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
20 | df-evenfin 4445 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
21 | 15, 19, 20 | elab2 2989 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
22 | 8, 14, 21 | mpbir2an 886 |
1
![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-nul 3552 df-pw 3725 df-sn 3742 df-pr 3743 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-sik 4193 df-ssetk 4194 df-0c 4378 df-addc 4379 df-nnc 4380 df-evenfin 4445 |
This theorem is referenced by: evenoddnnnul 4515 |
Copyright terms: Public domain | W3C validator |