New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > reu3 | Unicode version |
Description: A way to express restricted uniqueness. (Contributed by NM, 24-Oct-2006.) |
Ref | Expression |
---|---|
reu3 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reurex 2826 | . . 3 | |
2 | reu6 3026 | . . . 4 | |
3 | bi1 178 | . . . . . 6 | |
4 | 3 | ralimi 2690 | . . . . 5 |
5 | 4 | reximi 2722 | . . . 4 |
6 | 2, 5 | sylbi 187 | . . 3 |
7 | 1, 6 | jca 518 | . 2 |
8 | rexex 2674 | . . . 4 | |
9 | 8 | anim2i 552 | . . 3 |
10 | nfv 1619 | . . . . 5 | |
11 | 10 | eu3 2230 | . . . 4 |
12 | df-reu 2622 | . . . 4 | |
13 | df-rex 2621 | . . . . 5 | |
14 | df-ral 2620 | . . . . . . 7 | |
15 | impexp 433 | . . . . . . . 8 | |
16 | 15 | albii 1566 | . . . . . . 7 |
17 | 14, 16 | bitr4i 243 | . . . . . 6 |
18 | 17 | exbii 1582 | . . . . 5 |
19 | 13, 18 | anbi12i 678 | . . . 4 |
20 | 11, 12, 19 | 3bitr4i 268 | . . 3 |
21 | 9, 20 | sylibr 203 | . 2 |
22 | 7, 21 | impbii 180 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wi 4 wb 176 wa 358 wal 1540 wex 1541 wceq 1642 wcel 1710 weu 2204 wral 2615 wrex 2616 wreu 2617 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-cleq 2346 df-clel 2349 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 |
This theorem is referenced by: reu7 3032 |
Copyright terms: Public domain | W3C validator |