New Foundations Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  NFE Home  >  Th. List  >  reu3 Unicode version

Theorem reu3 3026
 Description: A way to express restricted uniqueness. (Contributed by NM, 24-Oct-2006.)
Assertion
Ref Expression
reu3
Distinct variable groups:   ,,   ,
Allowed substitution hint:   ()

Proof of Theorem reu3
StepHypRef Expression
1 reurex 2825 . . 3
2 reu6 3025 . . . 4
3 bi1 178 . . . . . 6
43ralimi 2689 . . . . 5
54reximi 2721 . . . 4
62, 5sylbi 187 . . 3
71, 6jca 518 . 2
8 rexex 2673 . . . 4
98anim2i 552 . . 3
10 nfv 1619 . . . . 5
1110eu3 2230 . . . 4
12 df-reu 2621 . . . 4
13 df-rex 2620 . . . . 5
14 df-ral 2619 . . . . . . 7
15 impexp 433 . . . . . . . 8
1615albii 1566 . . . . . . 7
1714, 16bitr4i 243 . . . . . 6
1817exbii 1582 . . . . 5
1913, 18anbi12i 678 . . . 4
2011, 12, 193bitr4i 268 . . 3
219, 20sylibr 203 . 2
227, 21impbii 180 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wb 176   wa 358  wal 1540  wex 1541   wceq 1642   wcel 1710  weu 2204  wral 2614  wrex 2615  wreu 2616 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209  df-cleq 2346  df-clel 2349  df-ral 2619  df-rex 2620  df-reu 2621  df-rmo 2622 This theorem is referenced by:  reu7  3031
 Copyright terms: Public domain W3C validator