New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > fv3 | Unicode version |
Description: Alternate definition of the value of a function. Definition 6.11 of [TakeutiZaring] p. 26. (Contributed by NM, 30-Apr-2004.) (Revised by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
fv3 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfv 5327 | . . 3 | |
2 | bi2 189 | . . . . . . . . . 10 | |
3 | 2 | alimi 1559 | . . . . . . . . 9 |
4 | vex 2863 | . . . . . . . . . 10 | |
5 | breq2 4644 | . . . . . . . . . 10 | |
6 | 4, 5 | ceqsalv 2886 | . . . . . . . . 9 |
7 | 3, 6 | sylib 188 | . . . . . . . 8 |
8 | 7 | anim2i 552 | . . . . . . 7 |
9 | 8 | eximi 1576 | . . . . . 6 |
10 | elequ2 1715 | . . . . . . . 8 | |
11 | breq2 4644 | . . . . . . . 8 | |
12 | 10, 11 | anbi12d 691 | . . . . . . 7 |
13 | 12 | cbvexv 2003 | . . . . . 6 |
14 | 9, 13 | sylib 188 | . . . . 5 |
15 | 19.40 1609 | . . . . . . 7 | |
16 | 15 | simprd 449 | . . . . . 6 |
17 | df-eu 2208 | . . . . . 6 | |
18 | 16, 17 | sylibr 203 | . . . . 5 |
19 | 14, 18 | jca 518 | . . . 4 |
20 | nfeu1 2214 | . . . . . . 7 | |
21 | nfv 1619 | . . . . . . . . 9 | |
22 | nfa1 1788 | . . . . . . . . 9 | |
23 | 21, 22 | nfan 1824 | . . . . . . . 8 |
24 | 23 | nfex 1843 | . . . . . . 7 |
25 | 20, 24 | nfim 1813 | . . . . . 6 |
26 | bi1 178 | . . . . . . . . . . . . . 14 | |
27 | ax-14 1714 | . . . . . . . . . . . . . 14 | |
28 | 26, 27 | syl6 29 | . . . . . . . . . . . . 13 |
29 | 28 | com23 72 | . . . . . . . . . . . 12 |
30 | 29 | imp3a 420 | . . . . . . . . . . 11 |
31 | 30 | sps 1754 | . . . . . . . . . 10 |
32 | 31 | anc2ri 541 | . . . . . . . . 9 |
33 | 32 | com12 27 | . . . . . . . 8 |
34 | 33 | eximdv 1622 | . . . . . . 7 |
35 | 17, 34 | syl5bi 208 | . . . . . 6 |
36 | 25, 35 | exlimi 1803 | . . . . 5 |
37 | 36 | imp 418 | . . . 4 |
38 | 19, 37 | impbii 180 | . . 3 |
39 | 1, 38 | bitri 240 | . 2 |
40 | 39 | abbi2i 2465 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wi 4 wb 176 wa 358 wal 1540 wex 1541 wceq 1642 wcel 1710 weu 2204 cab 2339 class class class wbr 4640 cfv 4782 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-addc 4379 df-nnc 4380 df-phi 4566 df-op 4567 df-br 4641 df-fv 4796 |
This theorem is referenced by: tz6.12-2 5347 |
Copyright terms: Public domain | W3C validator |