| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > fv3 | Unicode version | ||
| Description: Alternate definition of the value of a function. Definition 6.11 of [TakeutiZaring] p. 26. (Contributed by NM, 30-Apr-2004.) (Revised by Mario Carneiro, 31-Aug-2015.) | 
| Ref | Expression | 
|---|---|
| fv3 | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | elfv 5327 | 
. . 3
 | |
| 2 | bi2 189 | 
. . . . . . . . . 10
 | |
| 3 | 2 | alimi 1559 | 
. . . . . . . . 9
 | 
| 4 | vex 2863 | 
. . . . . . . . . 10
 | |
| 5 | breq2 4644 | 
. . . . . . . . . 10
 | |
| 6 | 4, 5 | ceqsalv 2886 | 
. . . . . . . . 9
 | 
| 7 | 3, 6 | sylib 188 | 
. . . . . . . 8
 | 
| 8 | 7 | anim2i 552 | 
. . . . . . 7
 | 
| 9 | 8 | eximi 1576 | 
. . . . . 6
 | 
| 10 | elequ2 1715 | 
. . . . . . . 8
 | |
| 11 | breq2 4644 | 
. . . . . . . 8
 | |
| 12 | 10, 11 | anbi12d 691 | 
. . . . . . 7
 | 
| 13 | 12 | cbvexv 2003 | 
. . . . . 6
 | 
| 14 | 9, 13 | sylib 188 | 
. . . . 5
 | 
| 15 | 19.40 1609 | 
. . . . . . 7
 | |
| 16 | 15 | simprd 449 | 
. . . . . 6
 | 
| 17 | df-eu 2208 | 
. . . . . 6
 | |
| 18 | 16, 17 | sylibr 203 | 
. . . . 5
 | 
| 19 | 14, 18 | jca 518 | 
. . . 4
 | 
| 20 | nfeu1 2214 | 
. . . . . . 7
 | |
| 21 | nfv 1619 | 
. . . . . . . . 9
 | |
| 22 | nfa1 1788 | 
. . . . . . . . 9
 | |
| 23 | 21, 22 | nfan 1824 | 
. . . . . . . 8
 | 
| 24 | 23 | nfex 1843 | 
. . . . . . 7
 | 
| 25 | 20, 24 | nfim 1813 | 
. . . . . 6
 | 
| 26 | bi1 178 | 
. . . . . . . . . . . . . 14
 | |
| 27 | ax-14 1714 | 
. . . . . . . . . . . . . 14
 | |
| 28 | 26, 27 | syl6 29 | 
. . . . . . . . . . . . 13
 | 
| 29 | 28 | com23 72 | 
. . . . . . . . . . . 12
 | 
| 30 | 29 | imp3a 420 | 
. . . . . . . . . . 11
 | 
| 31 | 30 | sps 1754 | 
. . . . . . . . . 10
 | 
| 32 | 31 | anc2ri 541 | 
. . . . . . . . 9
 | 
| 33 | 32 | com12 27 | 
. . . . . . . 8
 | 
| 34 | 33 | eximdv 1622 | 
. . . . . . 7
 | 
| 35 | 17, 34 | syl5bi 208 | 
. . . . . 6
 | 
| 36 | 25, 35 | exlimi 1803 | 
. . . . 5
 | 
| 37 | 36 | imp 418 | 
. . . 4
 | 
| 38 | 19, 37 | impbii 180 | 
. . 3
 | 
| 39 | 1, 38 | bitri 240 | 
. 2
 | 
| 40 | 39 | eqabi 2465 | 
1
 | 
| Colors of variables: wff setvar class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 | 
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-addc 4379 df-nnc 4380 df-phi 4566 df-op 4567 df-br 4641 df-fv 4796 | 
| This theorem is referenced by: tz6.12-2 5347 | 
| Copyright terms: Public domain | W3C validator |