New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > axins3prim | Unicode version |
Description: ax-ins3 4086 presented without any set theory definitions. (Contributed by SF, 25-Mar-2015.) |
Ref | Expression |
---|---|
axins3prim |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-ins3 4086 | . 2 | |
2 | df-clel 2349 | . . . . . . 7 | |
3 | axprimlem2 4090 | . . . . . . . . . 10 | |
4 | axprimlem1 4089 | . . . . . . . . . . . . . . . 16 | |
5 | axprimlem1 4089 | . . . . . . . . . . . . . . . . . 18 | |
6 | 5 | bibi2i 304 | . . . . . . . . . . . . . . . . 17 |
7 | 6 | albii 1566 | . . . . . . . . . . . . . . . 16 |
8 | 4, 7 | bitri 240 | . . . . . . . . . . . . . . 15 |
9 | 8 | bibi2i 304 | . . . . . . . . . . . . . 14 |
10 | 9 | albii 1566 | . . . . . . . . . . . . 13 |
11 | axprimlem1 4089 | . . . . . . . . . . . . . . . . 17 | |
12 | axprimlem1 4089 | . . . . . . . . . . . . . . . . . . 19 | |
13 | 12 | bibi2i 304 | . . . . . . . . . . . . . . . . . 18 |
14 | 13 | albii 1566 | . . . . . . . . . . . . . . . . 17 |
15 | 11, 14 | bitri 240 | . . . . . . . . . . . . . . . 16 |
16 | axprimlem2 4090 | . . . . . . . . . . . . . . . 16 | |
17 | 15, 16 | orbi12i 507 | . . . . . . . . . . . . . . 15 |
18 | 17 | bibi2i 304 | . . . . . . . . . . . . . 14 |
19 | 18 | albii 1566 | . . . . . . . . . . . . 13 |
20 | 10, 19 | orbi12i 507 | . . . . . . . . . . . 12 |
21 | 20 | bibi2i 304 | . . . . . . . . . . 11 |
22 | 21 | albii 1566 | . . . . . . . . . 10 |
23 | 3, 22 | bitri 240 | . . . . . . . . 9 |
24 | 23 | anbi1i 676 | . . . . . . . 8 |
25 | 24 | exbii 1582 | . . . . . . 7 |
26 | 2, 25 | bitri 240 | . . . . . 6 |
27 | df-clel 2349 | . . . . . . 7 | |
28 | axprimlem2 4090 | . . . . . . . . 9 | |
29 | 28 | anbi1i 676 | . . . . . . . 8 |
30 | 29 | exbii 1582 | . . . . . . 7 |
31 | 27, 30 | bitri 240 | . . . . . 6 |
32 | 26, 31 | bibi12i 306 | . . . . 5 |
33 | 32 | albii 1566 | . . . 4 |
34 | 33 | 2albii 1567 | . . 3 |
35 | 34 | exbii 1582 | . 2 |
36 | 1, 35 | mpbi 199 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wb 176 wo 357 wa 358 wal 1540 wex 1541 wceq 1642 wcel 1710 csn 3738 copk 4058 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-ins3 4086 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-un 3215 df-sn 3742 df-pr 3743 df-opk 4059 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |