| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > axprimlem1 | Unicode version | ||
| Description: Lemma for the primitive axioms. Primitive form of equality to a singleton. (Contributed by SF, 25-Mar-2015.) |
| Ref | Expression |
|---|---|
| axprimlem1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfcleq 2347 |
. 2
| |
| 2 | elsn 3749 |
. . . 4
| |
| 3 | 2 | bibi2i 304 |
. . 3
|
| 4 | 3 | albii 1566 |
. 2
|
| 5 | 1, 4 | bitri 240 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 ax-ext 2334 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-sn 3742 |
| This theorem is referenced by: axprimlem2 4090 axsiprim 4094 axtyplowerprim 4095 axins2prim 4096 axins3prim 4097 snex 4112 |
| Copyright terms: Public domain | W3C validator |