NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  axins2prim Unicode version

Theorem axins2prim 4096
Description: ax-ins2 4085 presented without any set theory definitions. (Contributed by SF, 25-Mar-2015.)
Assertion
Ref Expression
axins2prim
Distinct variable groups:   ,,,   ,,   ,   ,,,,   ,,   ,,   ,,   ,   ,,,   ,,   ,   ,,,   ,   ,,   ,,   ,,   ,   ,,,   ,   ,,   ,,,,

Proof of Theorem axins2prim
StepHypRef Expression
1 ax-ins2 4085 . 2
2 df-clel 2349 . . . . . . 7
3 axprimlem2 4090 . . . . . . . . . 10
4 axprimlem1 4089 . . . . . . . . . . . . . . . 16
5 axprimlem1 4089 . . . . . . . . . . . . . . . . . 18
65bibi2i 304 . . . . . . . . . . . . . . . . 17
76albii 1566 . . . . . . . . . . . . . . . 16
84, 7bitri 240 . . . . . . . . . . . . . . 15
98bibi2i 304 . . . . . . . . . . . . . 14
109albii 1566 . . . . . . . . . . . . 13
11 axprimlem1 4089 . . . . . . . . . . . . . . . . 17
12 axprimlem1 4089 . . . . . . . . . . . . . . . . . . 19
1312bibi2i 304 . . . . . . . . . . . . . . . . . 18
1413albii 1566 . . . . . . . . . . . . . . . . 17
1511, 14bitri 240 . . . . . . . . . . . . . . . 16
16 axprimlem2 4090 . . . . . . . . . . . . . . . 16
1715, 16orbi12i 507 . . . . . . . . . . . . . . 15
1817bibi2i 304 . . . . . . . . . . . . . 14
1918albii 1566 . . . . . . . . . . . . 13
2010, 19orbi12i 507 . . . . . . . . . . . 12
2120bibi2i 304 . . . . . . . . . . 11
2221albii 1566 . . . . . . . . . 10
233, 22bitri 240 . . . . . . . . 9
2423anbi1i 676 . . . . . . . 8
2524exbii 1582 . . . . . . 7
262, 25bitri 240 . . . . . 6
27 df-clel 2349 . . . . . . 7
28 axprimlem2 4090 . . . . . . . . 9
2928anbi1i 676 . . . . . . . 8
3029exbii 1582 . . . . . . 7
3127, 30bitri 240 . . . . . 6
3226, 31bibi12i 306 . . . . 5
3332albii 1566 . . . 4
34332albii 1567 . . 3
3534exbii 1582 . 2
361, 35mpbi 199 1
Colors of variables: wff setvar class
Syntax hints:   wb 176   wo 357   wa 358  wal 1540  wex 1541   wceq 1642   wcel 1710  csn 3738  copk 4058
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-ins2 4085
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-v 2862  df-nin 3212  df-compl 3213  df-un 3215  df-sn 3742  df-pr 3743  df-opk 4059
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator