NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  cbviota Unicode version

Theorem cbviota 4345
Description: Change bound variables in a description binder. (Contributed by Andrew Salmon, 1-Aug-2011.)
Hypotheses
Ref Expression
cbviota.1
cbviota.2  F/
cbviota.3  F/
Assertion
Ref Expression
cbviota

Proof of Theorem cbviota
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1619 . . . . . 6  F/
2 nfs1v 2106 . . . . . . 7  F/
3 nfv 1619 . . . . . . 7  F/
42, 3nfbi 1834 . . . . . 6  F/
5 sbequ12 1919 . . . . . . 7
6 equequ1 1684 . . . . . . 7
75, 6bibi12d 312 . . . . . 6
81, 4, 7cbval 1984 . . . . 5
9 cbviota.2 . . . . . . . 8  F/
109nfsb 2109 . . . . . . 7  F/
11 nfv 1619 . . . . . . 7  F/
1210, 11nfbi 1834 . . . . . 6  F/
13 nfv 1619 . . . . . 6  F/
14 sbequ 2060 . . . . . . . 8
15 cbviota.3 . . . . . . . . 9  F/
16 cbviota.1 . . . . . . . . 9
1715, 16sbie 2038 . . . . . . . 8
1814, 17syl6bb 252 . . . . . . 7
19 equequ1 1684 . . . . . . 7
2018, 19bibi12d 312 . . . . . 6
2112, 13, 20cbval 1984 . . . . 5
228, 21bitri 240 . . . 4
2322abbii 2466 . . 3
2423unieqi 3902 . 2
25 dfiota2 4341 . 2
26 dfiota2 4341 . 2
2724, 25, 263eqtr4i 2383 1
Colors of variables: wff setvar class
Syntax hints:   wi 4   wb 176  wal 1540   F/wnf 1544   wceq 1642  wsb 1648  cab 2339  cuni 3892  cio 4338
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-rex 2621  df-sn 3742  df-uni 3893  df-iota 4340
This theorem is referenced by:  cbviotav  4346
  Copyright terms: Public domain W3C validator