| Step | Hyp | Ref
| Expression |
| 1 | | nfv 1619 |
. . . . . 6
⊢ Ⅎz(φ ↔
x = w) |
| 2 | | nfs1v 2106 |
. . . . . . 7
⊢ Ⅎx[z / x]φ |
| 3 | | nfv 1619 |
. . . . . . 7
⊢ Ⅎx z = w |
| 4 | 2, 3 | nfbi 1834 |
. . . . . 6
⊢ Ⅎx([z / x]φ ↔
z = w) |
| 5 | | sbequ12 1919 |
. . . . . . 7
⊢ (x = z →
(φ ↔ [z / x]φ)) |
| 6 | | equequ1 1684 |
. . . . . . 7
⊢ (x = z →
(x = w
↔ z = w)) |
| 7 | 5, 6 | bibi12d 312 |
. . . . . 6
⊢ (x = z →
((φ ↔ x = w) ↔
([z / x]φ ↔
z = w))) |
| 8 | 1, 4, 7 | cbval 1984 |
. . . . 5
⊢ (∀x(φ ↔ x = w) ↔
∀z([z / x]φ ↔
z = w)) |
| 9 | | cbviota.2 |
. . . . . . . 8
⊢ Ⅎyφ |
| 10 | 9 | nfsb 2109 |
. . . . . . 7
⊢ Ⅎy[z / x]φ |
| 11 | | nfv 1619 |
. . . . . . 7
⊢ Ⅎy z = w |
| 12 | 10, 11 | nfbi 1834 |
. . . . . 6
⊢ Ⅎy([z / x]φ ↔
z = w) |
| 13 | | nfv 1619 |
. . . . . 6
⊢ Ⅎz(ψ ↔
y = w) |
| 14 | | sbequ 2060 |
. . . . . . . 8
⊢ (z = y →
([z / x]φ ↔
[y / x]φ)) |
| 15 | | cbviota.3 |
. . . . . . . . 9
⊢ Ⅎxψ |
| 16 | | cbviota.1 |
. . . . . . . . 9
⊢ (x = y →
(φ ↔ ψ)) |
| 17 | 15, 16 | sbie 2038 |
. . . . . . . 8
⊢ ([y / x]φ ↔ ψ) |
| 18 | 14, 17 | syl6bb 252 |
. . . . . . 7
⊢ (z = y →
([z / x]φ ↔
ψ)) |
| 19 | | equequ1 1684 |
. . . . . . 7
⊢ (z = y →
(z = w
↔ y = w)) |
| 20 | 18, 19 | bibi12d 312 |
. . . . . 6
⊢ (z = y →
(([z / x]φ ↔
z = w)
↔ (ψ ↔ y = w))) |
| 21 | 12, 13, 20 | cbval 1984 |
. . . . 5
⊢ (∀z([z / x]φ ↔ z = w) ↔
∀y(ψ ↔
y = w)) |
| 22 | 8, 21 | bitri 240 |
. . . 4
⊢ (∀x(φ ↔ x = w) ↔
∀y(ψ ↔
y = w)) |
| 23 | 22 | abbii 2466 |
. . 3
⊢ {w ∣ ∀x(φ ↔ x = w)} =
{w ∣
∀y(ψ ↔
y = w)} |
| 24 | 23 | unieqi 3902 |
. 2
⊢ ∪{w ∣ ∀x(φ ↔
x = w)}
= ∪{w ∣ ∀y(ψ ↔
y = w)} |
| 25 | | dfiota2 4341 |
. 2
⊢ (℩xφ) = ∪{w ∣ ∀x(φ ↔
x = w)} |
| 26 | | dfiota2 4341 |
. 2
⊢ (℩yψ) = ∪{w ∣ ∀y(ψ ↔
y = w)} |
| 27 | 24, 25, 26 | 3eqtr4i 2383 |
1
⊢ (℩xφ) =
(℩yψ) |