Step | Hyp | Ref
| Expression |
1 | | nfv 1619 |
. . . . . 6
⊢ Ⅎz(φ ↔
x = w) |
2 | | nfs1v 2106 |
. . . . . . 7
⊢ Ⅎx[z / x]φ |
3 | | nfv 1619 |
. . . . . . 7
⊢ Ⅎx z = w |
4 | 2, 3 | nfbi 1834 |
. . . . . 6
⊢ Ⅎx([z / x]φ ↔
z = w) |
5 | | sbequ12 1919 |
. . . . . . 7
⊢ (x = z →
(φ ↔ [z / x]φ)) |
6 | | equequ1 1684 |
. . . . . . 7
⊢ (x = z →
(x = w
↔ z = w)) |
7 | 5, 6 | bibi12d 312 |
. . . . . 6
⊢ (x = z →
((φ ↔ x = w) ↔
([z / x]φ ↔
z = w))) |
8 | 1, 4, 7 | cbval 1984 |
. . . . 5
⊢ (∀x(φ ↔ x = w) ↔
∀z([z / x]φ ↔
z = w)) |
9 | | cbviota.2 |
. . . . . . . 8
⊢ Ⅎyφ |
10 | 9 | nfsb 2109 |
. . . . . . 7
⊢ Ⅎy[z / x]φ |
11 | | nfv 1619 |
. . . . . . 7
⊢ Ⅎy z = w |
12 | 10, 11 | nfbi 1834 |
. . . . . 6
⊢ Ⅎy([z / x]φ ↔
z = w) |
13 | | nfv 1619 |
. . . . . 6
⊢ Ⅎz(ψ ↔
y = w) |
14 | | sbequ 2060 |
. . . . . . . 8
⊢ (z = y →
([z / x]φ ↔
[y / x]φ)) |
15 | | cbviota.3 |
. . . . . . . . 9
⊢ Ⅎxψ |
16 | | cbviota.1 |
. . . . . . . . 9
⊢ (x = y →
(φ ↔ ψ)) |
17 | 15, 16 | sbie 2038 |
. . . . . . . 8
⊢ ([y / x]φ ↔ ψ) |
18 | 14, 17 | syl6bb 252 |
. . . . . . 7
⊢ (z = y →
([z / x]φ ↔
ψ)) |
19 | | equequ1 1684 |
. . . . . . 7
⊢ (z = y →
(z = w
↔ y = w)) |
20 | 18, 19 | bibi12d 312 |
. . . . . 6
⊢ (z = y →
(([z / x]φ ↔
z = w)
↔ (ψ ↔ y = w))) |
21 | 12, 13, 20 | cbval 1984 |
. . . . 5
⊢ (∀z([z / x]φ ↔ z = w) ↔
∀y(ψ ↔
y = w)) |
22 | 8, 21 | bitri 240 |
. . . 4
⊢ (∀x(φ ↔ x = w) ↔
∀y(ψ ↔
y = w)) |
23 | 22 | abbii 2466 |
. . 3
⊢ {w ∣ ∀x(φ ↔ x = w)} =
{w ∣
∀y(ψ ↔
y = w)} |
24 | 23 | unieqi 3902 |
. 2
⊢ ∪{w ∣ ∀x(φ ↔
x = w)}
= ∪{w ∣ ∀y(ψ ↔
y = w)} |
25 | | dfiota2 4341 |
. 2
⊢ (℩xφ) = ∪{w ∣ ∀x(φ ↔
x = w)} |
26 | | dfiota2 4341 |
. 2
⊢ (℩yψ) = ∪{w ∣ ∀y(ψ ↔
y = w)} |
27 | 24, 25, 26 | 3eqtr4i 2383 |
1
⊢ (℩xφ) =
(℩yψ) |