Proof of Theorem ceqsex8v
Step | Hyp | Ref
| Expression |
1 | | 19.42vv 1907 |
. . . . . . 7
|
2 | 1 | 2exbii 1583 |
. . . . . 6
|
3 | | 19.42vv 1907 |
. . . . . 6
|
4 | 2, 3 | bitri 240 |
. . . . 5
|
5 | | 3anass 938 |
. . . . . . . 8
|
6 | | df-3an 936 |
. . . . . . . . 9
|
7 | 6 | anbi2i 675 |
. . . . . . . 8
|
8 | 5, 7 | bitr4i 243 |
. . . . . . 7
|
9 | 8 | 2exbii 1583 |
. . . . . 6
|
10 | 9 | 2exbii 1583 |
. . . . 5
|
11 | | df-3an 936 |
. . . . 5
|
12 | 4, 10, 11 | 3bitr4i 268 |
. . . 4
|
13 | 12 | 2exbii 1583 |
. . 3
|
14 | 13 | 2exbii 1583 |
. 2
|
15 | | ceqsex8v.1 |
. . . 4
|
16 | | ceqsex8v.2 |
. . . 4
|
17 | | ceqsex8v.3 |
. . . 4
|
18 | | ceqsex8v.4 |
. . . 4
|
19 | | ceqsex8v.9 |
. . . . . 6
|
20 | 19 | 3anbi3d 1258 |
. . . . 5
|
21 | 20 | 4exbidv 1630 |
. . . 4
|
22 | | ceqsex8v.10 |
. . . . . 6
|
23 | 22 | 3anbi3d 1258 |
. . . . 5
|
24 | 23 | 4exbidv 1630 |
. . . 4
|
25 | | ceqsex8v.11 |
. . . . . 6
|
26 | 25 | 3anbi3d 1258 |
. . . . 5
|
27 | 26 | 4exbidv 1630 |
. . . 4
|
28 | | ceqsex8v.12 |
. . . . . 6
|
29 | 28 | 3anbi3d 1258 |
. . . . 5
|
30 | 29 | 4exbidv 1630 |
. . . 4
|
31 | 15, 16, 17, 18, 21, 24, 27, 30 | ceqsex4v 2899 |
. . 3
|
32 | | ceqsex8v.5 |
. . . 4
|
33 | | ceqsex8v.6 |
. . . 4
|
34 | | ceqsex8v.7 |
. . . 4
|
35 | | ceqsex8v.8 |
. . . 4
|
36 | | ceqsex8v.13 |
. . . 4
|
37 | | ceqsex8v.14 |
. . . 4
|
38 | | ceqsex8v.15 |
. . . 4
|
39 | | ceqsex8v.16 |
. . . 4
|
40 | 32, 33, 34, 35, 36, 37, 38, 39 | ceqsex4v 2899 |
. . 3
|
41 | 31, 40 | bitri 240 |
. 2
|
42 | 14, 41 | bitri 240 |
1
|