Proof of Theorem ceqsex8v
| Step | Hyp | Ref
| Expression |
| 1 | | 19.42vv 1907 |
. . . . . . 7
⊢ (∃t∃s(((x = A ∧ y = B) ∧ (z = C ∧ w = D)) ∧ ((v = E ∧ u = F) ∧ (t = G ∧ s = H) ∧ φ)) ↔ (((x = A ∧ y = B) ∧ (z = C ∧ w = D)) ∧ ∃t∃s((v = E ∧ u = F) ∧ (t = G ∧ s = H) ∧ φ))) |
| 2 | 1 | 2exbii 1583 |
. . . . . 6
⊢ (∃v∃u∃t∃s(((x = A ∧ y = B) ∧ (z = C ∧ w = D)) ∧ ((v = E ∧ u = F) ∧ (t = G ∧ s = H) ∧ φ)) ↔ ∃v∃u(((x = A ∧ y = B) ∧ (z = C ∧ w = D)) ∧ ∃t∃s((v = E ∧ u = F) ∧ (t = G ∧ s = H) ∧ φ))) |
| 3 | | 19.42vv 1907 |
. . . . . 6
⊢ (∃v∃u(((x = A ∧ y = B) ∧ (z = C ∧ w = D)) ∧ ∃t∃s((v = E ∧ u = F) ∧ (t = G ∧ s = H) ∧ φ)) ↔ (((x = A ∧ y = B) ∧ (z = C ∧ w = D)) ∧ ∃v∃u∃t∃s((v = E ∧ u = F) ∧ (t = G ∧ s = H) ∧ φ))) |
| 4 | 2, 3 | bitri 240 |
. . . . 5
⊢ (∃v∃u∃t∃s(((x = A ∧ y = B) ∧ (z = C ∧ w = D)) ∧ ((v = E ∧ u = F) ∧ (t = G ∧ s = H) ∧ φ)) ↔ (((x = A ∧ y = B) ∧ (z = C ∧ w = D)) ∧ ∃v∃u∃t∃s((v = E ∧ u = F) ∧ (t = G ∧ s = H) ∧ φ))) |
| 5 | | 3anass 938 |
. . . . . . . 8
⊢ ((((x = A ∧ y = B) ∧ (z = C ∧ w = D)) ∧ ((v = E ∧ u = F) ∧ (t = G ∧ s = H)) ∧ φ) ↔ (((x = A ∧ y = B) ∧ (z = C ∧ w = D)) ∧ (((v = E ∧ u = F) ∧ (t = G ∧ s = H)) ∧ φ))) |
| 6 | | df-3an 936 |
. . . . . . . . 9
⊢ (((v = E ∧ u = F) ∧ (t = G ∧ s = H) ∧ φ) ↔ (((v = E ∧ u = F) ∧ (t = G ∧ s = H)) ∧ φ)) |
| 7 | 6 | anbi2i 675 |
. . . . . . . 8
⊢ ((((x = A ∧ y = B) ∧ (z = C ∧ w = D)) ∧ ((v = E ∧ u = F) ∧ (t = G ∧ s = H) ∧ φ)) ↔ (((x = A ∧ y = B) ∧ (z = C ∧ w = D)) ∧ (((v = E ∧ u = F) ∧ (t = G ∧ s = H)) ∧ φ))) |
| 8 | 5, 7 | bitr4i 243 |
. . . . . . 7
⊢ ((((x = A ∧ y = B) ∧ (z = C ∧ w = D)) ∧ ((v = E ∧ u = F) ∧ (t = G ∧ s = H)) ∧ φ) ↔ (((x = A ∧ y = B) ∧ (z = C ∧ w = D)) ∧ ((v = E ∧ u = F) ∧ (t = G ∧ s = H) ∧ φ))) |
| 9 | 8 | 2exbii 1583 |
. . . . . 6
⊢ (∃t∃s(((x = A ∧ y = B) ∧ (z = C ∧ w = D)) ∧ ((v = E ∧ u = F) ∧ (t = G ∧ s = H)) ∧ φ) ↔ ∃t∃s(((x = A ∧ y = B) ∧ (z = C ∧ w = D)) ∧ ((v = E ∧ u = F) ∧ (t = G ∧ s = H) ∧ φ))) |
| 10 | 9 | 2exbii 1583 |
. . . . 5
⊢ (∃v∃u∃t∃s(((x = A ∧ y = B) ∧ (z = C ∧ w = D)) ∧ ((v = E ∧ u = F) ∧ (t = G ∧ s = H)) ∧ φ) ↔ ∃v∃u∃t∃s(((x = A ∧ y = B) ∧ (z = C ∧ w = D)) ∧ ((v = E ∧ u = F) ∧ (t = G ∧ s = H) ∧ φ))) |
| 11 | | df-3an 936 |
. . . . 5
⊢ (((x = A ∧ y = B) ∧ (z = C ∧ w = D) ∧ ∃v∃u∃t∃s((v = E ∧ u = F) ∧ (t = G ∧ s = H) ∧ φ)) ↔ (((x = A ∧ y = B) ∧ (z = C ∧ w = D)) ∧ ∃v∃u∃t∃s((v = E ∧ u = F) ∧ (t = G ∧ s = H) ∧ φ))) |
| 12 | 4, 10, 11 | 3bitr4i 268 |
. . . 4
⊢ (∃v∃u∃t∃s(((x = A ∧ y = B) ∧ (z = C ∧ w = D)) ∧ ((v = E ∧ u = F) ∧ (t = G ∧ s = H)) ∧ φ) ↔ ((x = A ∧ y = B) ∧ (z = C ∧ w = D) ∧ ∃v∃u∃t∃s((v = E ∧ u = F) ∧ (t = G ∧ s = H) ∧ φ))) |
| 13 | 12 | 2exbii 1583 |
. . 3
⊢ (∃z∃w∃v∃u∃t∃s(((x = A ∧ y = B) ∧ (z = C ∧ w = D)) ∧ ((v = E ∧ u = F) ∧ (t = G ∧ s = H)) ∧ φ) ↔ ∃z∃w((x = A ∧ y = B) ∧ (z = C ∧ w = D) ∧ ∃v∃u∃t∃s((v = E ∧ u = F) ∧ (t = G ∧ s = H) ∧ φ))) |
| 14 | 13 | 2exbii 1583 |
. 2
⊢ (∃x∃y∃z∃w∃v∃u∃t∃s(((x = A ∧ y = B) ∧ (z = C ∧ w = D)) ∧ ((v = E ∧ u = F) ∧ (t = G ∧ s = H)) ∧ φ) ↔ ∃x∃y∃z∃w((x = A ∧ y = B) ∧ (z = C ∧ w = D) ∧ ∃v∃u∃t∃s((v = E ∧ u = F) ∧ (t = G ∧ s = H) ∧ φ))) |
| 15 | | ceqsex8v.1 |
. . . 4
⊢ A ∈
V |
| 16 | | ceqsex8v.2 |
. . . 4
⊢ B ∈
V |
| 17 | | ceqsex8v.3 |
. . . 4
⊢ C ∈
V |
| 18 | | ceqsex8v.4 |
. . . 4
⊢ D ∈
V |
| 19 | | ceqsex8v.9 |
. . . . . 6
⊢ (x = A →
(φ ↔ ψ)) |
| 20 | 19 | 3anbi3d 1258 |
. . . . 5
⊢ (x = A →
(((v = E ∧ u = F) ∧ (t = G ∧ s = H) ∧ φ) ↔
((v = E
∧ u =
F) ∧
(t = G
∧ s =
H) ∧ ψ))) |
| 21 | 20 | 4exbidv 1630 |
. . . 4
⊢ (x = A →
(∃v∃u∃t∃s((v = E ∧ u = F) ∧ (t = G ∧ s = H) ∧ φ) ↔ ∃v∃u∃t∃s((v = E ∧ u = F) ∧ (t = G ∧ s = H) ∧ ψ))) |
| 22 | | ceqsex8v.10 |
. . . . . 6
⊢ (y = B →
(ψ ↔ χ)) |
| 23 | 22 | 3anbi3d 1258 |
. . . . 5
⊢ (y = B →
(((v = E ∧ u = F) ∧ (t = G ∧ s = H) ∧ ψ) ↔
((v = E
∧ u =
F) ∧
(t = G
∧ s =
H) ∧ χ))) |
| 24 | 23 | 4exbidv 1630 |
. . . 4
⊢ (y = B →
(∃v∃u∃t∃s((v = E ∧ u = F) ∧ (t = G ∧ s = H) ∧ ψ) ↔ ∃v∃u∃t∃s((v = E ∧ u = F) ∧ (t = G ∧ s = H) ∧ χ))) |
| 25 | | ceqsex8v.11 |
. . . . . 6
⊢ (z = C →
(χ ↔ θ)) |
| 26 | 25 | 3anbi3d 1258 |
. . . . 5
⊢ (z = C →
(((v = E ∧ u = F) ∧ (t = G ∧ s = H) ∧ χ) ↔
((v = E
∧ u =
F) ∧
(t = G
∧ s =
H) ∧ θ))) |
| 27 | 26 | 4exbidv 1630 |
. . . 4
⊢ (z = C →
(∃v∃u∃t∃s((v = E ∧ u = F) ∧ (t = G ∧ s = H) ∧ χ) ↔ ∃v∃u∃t∃s((v = E ∧ u = F) ∧ (t = G ∧ s = H) ∧ θ))) |
| 28 | | ceqsex8v.12 |
. . . . . 6
⊢ (w = D →
(θ ↔ τ)) |
| 29 | 28 | 3anbi3d 1258 |
. . . . 5
⊢ (w = D →
(((v = E ∧ u = F) ∧ (t = G ∧ s = H) ∧ θ)
↔ ((v = E ∧ u = F) ∧ (t = G ∧ s = H) ∧ τ))) |
| 30 | 29 | 4exbidv 1630 |
. . . 4
⊢ (w = D →
(∃v∃u∃t∃s((v = E ∧ u = F) ∧ (t = G ∧ s = H) ∧ θ) ↔ ∃v∃u∃t∃s((v = E ∧ u = F) ∧ (t = G ∧ s = H) ∧ τ))) |
| 31 | 15, 16, 17, 18, 21, 24, 27, 30 | ceqsex4v 2899 |
. . 3
⊢ (∃x∃y∃z∃w((x = A ∧ y = B) ∧ (z = C ∧ w = D) ∧ ∃v∃u∃t∃s((v = E ∧ u = F) ∧ (t = G ∧ s = H) ∧ φ)) ↔ ∃v∃u∃t∃s((v = E ∧ u = F) ∧ (t = G ∧ s = H) ∧ τ)) |
| 32 | | ceqsex8v.5 |
. . . 4
⊢ E ∈
V |
| 33 | | ceqsex8v.6 |
. . . 4
⊢ F ∈
V |
| 34 | | ceqsex8v.7 |
. . . 4
⊢ G ∈
V |
| 35 | | ceqsex8v.8 |
. . . 4
⊢ H ∈
V |
| 36 | | ceqsex8v.13 |
. . . 4
⊢ (v = E →
(τ ↔ η)) |
| 37 | | ceqsex8v.14 |
. . . 4
⊢ (u = F →
(η ↔ ζ)) |
| 38 | | ceqsex8v.15 |
. . . 4
⊢ (t = G →
(ζ ↔ σ)) |
| 39 | | ceqsex8v.16 |
. . . 4
⊢ (s = H →
(σ ↔ ρ)) |
| 40 | 32, 33, 34, 35, 36, 37, 38, 39 | ceqsex4v 2899 |
. . 3
⊢ (∃v∃u∃t∃s((v = E ∧ u = F) ∧ (t = G ∧ s = H) ∧ τ) ↔ ρ) |
| 41 | 31, 40 | bitri 240 |
. 2
⊢ (∃x∃y∃z∃w((x = A ∧ y = B) ∧ (z = C ∧ w = D) ∧ ∃v∃u∃t∃s((v = E ∧ u = F) ∧ (t = G ∧ s = H) ∧ φ)) ↔ ρ) |
| 42 | 14, 41 | bitri 240 |
1
⊢ (∃x∃y∃z∃w∃v∃u∃t∃s(((x = A ∧ y = B) ∧ (z = C ∧ w = D)) ∧ ((v = E ∧ u = F) ∧ (t = G ∧ s = H)) ∧ φ) ↔ ρ) |