New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > clos1eq2 | Unicode version |
Description: Equality law for closure. (Contributed by SF, 11-Feb-2015.) |
Ref | Expression |
---|---|
clos1eq2 | Clos1 Clos1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imaeq1 4938 | . . . . . 6 | |
2 | 1 | sseq1d 3299 | . . . . 5 |
3 | 2 | anbi2d 684 | . . . 4 |
4 | 3 | abbidv 2468 | . . 3 |
5 | inteq 3930 | . . 3 | |
6 | 4, 5 | syl 15 | . 2 |
7 | df-clos1 5874 | . 2 Clos1 | |
8 | df-clos1 5874 | . 2 Clos1 | |
9 | 6, 7, 8 | 3eqtr4g 2410 | 1 Clos1 Clos1 |
Colors of variables: wff setvar class |
Syntax hints: wi 4 wa 358 wceq 1642 cab 2339 wss 3258 cint 3927 cima 4723 Clos1 cclos1 5873 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ral 2620 df-rex 2621 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-ss 3260 df-int 3928 df-br 4641 df-ima 4728 df-clos1 5874 |
This theorem is referenced by: clos1exg 5878 clos1basesucg 5885 freceq12 6312 |
Copyright terms: Public domain | W3C validator |