New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > clos1ex | Unicode version |
Description: The closure of a set under a set is a set. (Contributed by SF, 11-Feb-2015.) |
Ref | Expression |
---|---|
clos1ex.1 | |
clos1ex.2 |
Ref | Expression |
---|---|
clos1ex | Clos1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-clos1 5873 | . 2 Clos1 | |
2 | elin 3219 | . . . . . 6 S S Image S S Image | |
3 | elimasn 5019 | . . . . . . . 8 S S | |
4 | df-br 4640 | . . . . . . . 8 S S | |
5 | clos1ex.1 | . . . . . . . . 9 | |
6 | vex 2862 | . . . . . . . . 9 | |
7 | 5, 6 | brsset 4758 | . . . . . . . 8 S |
8 | 3, 4, 7 | 3bitr2i 264 | . . . . . . 7 S |
9 | elfix 5787 | . . . . . . . 8 S Image S Image | |
10 | brco 4883 | . . . . . . . . 9 S Image Image S | |
11 | vex 2862 | . . . . . . . . . . . . 13 | |
12 | 6, 11 | brimage 5793 | . . . . . . . . . . . 12 Image |
13 | 12 | anbi1i 676 | . . . . . . . . . . 11 Image S S |
14 | 13 | exbii 1582 | . . . . . . . . . 10 Image S S |
15 | clos1ex.2 | . . . . . . . . . . . 12 | |
16 | 15, 6 | imaex 4747 | . . . . . . . . . . 11 |
17 | breq1 4642 | . . . . . . . . . . . 12 S S | |
18 | 16, 6 | brsset 4758 | . . . . . . . . . . . 12 S |
19 | 17, 18 | syl6bb 252 | . . . . . . . . . . 11 S |
20 | 16, 19 | ceqsexv 2894 | . . . . . . . . . 10 S |
21 | 14, 20 | bitri 240 | . . . . . . . . 9 Image S |
22 | 10, 21 | bitri 240 | . . . . . . . 8 S Image |
23 | 9, 22 | bitri 240 | . . . . . . 7 S Image |
24 | 8, 23 | anbi12i 678 | . . . . . 6 S S Image |
25 | 2, 24 | bitri 240 | . . . . 5 S S Image |
26 | 25 | abbi2i 2464 | . . . 4 S S Image |
27 | ssetex 4744 | . . . . . 6 S | |
28 | snex 4111 | . . . . . 6 | |
29 | 27, 28 | imaex 4747 | . . . . 5 S |
30 | 15 | imageex 5801 | . . . . . . 7 Image |
31 | 27, 30 | coex 4750 | . . . . . 6 S Image |
32 | 31 | fixex 5789 | . . . . 5 S Image |
33 | 29, 32 | inex 4105 | . . . 4 S S Image |
34 | 26, 33 | eqeltrri 2424 | . . 3 |
35 | 34 | intex 4320 | . 2 |
36 | 1, 35 | eqeltri 2423 | 1 Clos1 |
Colors of variables: wff setvar class |
Syntax hints: wa 358 wex 1541 wceq 1642 wcel 1710 cab 2339 cvv 2859 cin 3208 wss 3257 csn 3737 cint 3926 cop 4561 class class class wbr 4639 S csset 4719 ccom 4721 cima 4722 cfix 5739 Imagecimage 5753 Clos1 cclos1 5872 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4078 ax-xp 4079 ax-cnv 4080 ax-1c 4081 ax-sset 4082 ax-si 4083 ax-ins2 4084 ax-ins3 4085 ax-typlower 4086 ax-sn 4087 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-ne 2518 df-ral 2619 df-rex 2620 df-reu 2621 df-rmo 2622 df-rab 2623 df-v 2861 df-sbc 3047 df-nin 3211 df-compl 3212 df-in 3213 df-un 3214 df-dif 3215 df-symdif 3216 df-ss 3259 df-pss 3261 df-nul 3551 df-if 3663 df-pw 3724 df-sn 3741 df-pr 3742 df-uni 3892 df-int 3927 df-opk 4058 df-1c 4136 df-pw1 4137 df-uni1 4138 df-xpk 4185 df-cnvk 4186 df-ins2k 4187 df-ins3k 4188 df-imak 4189 df-cok 4190 df-p6 4191 df-sik 4192 df-ssetk 4193 df-imagek 4194 df-idk 4195 df-iota 4339 df-0c 4377 df-addc 4378 df-nnc 4379 df-fin 4380 df-lefin 4440 df-ltfin 4441 df-ncfin 4442 df-tfin 4443 df-evenfin 4444 df-oddfin 4445 df-sfin 4446 df-spfin 4447 df-phi 4565 df-op 4566 df-proj1 4567 df-proj2 4568 df-opab 4623 df-br 4640 df-1st 4723 df-swap 4724 df-sset 4725 df-co 4726 df-ima 4727 df-si 4728 df-id 4767 df-xp 4784 df-cnv 4785 df-rn 4786 df-dm 4787 df-res 4788 df-2nd 4797 df-txp 5736 df-fix 5740 df-ins2 5750 df-ins3 5752 df-image 5754 df-clos1 5873 |
This theorem is referenced by: clos1exg 5877 clos1induct 5880 clos1basesuc 5882 sbthlem1 6203 spacval 6282 fnspac 6283 nchoicelem11 6299 nchoicelem16 6304 |
Copyright terms: Public domain | W3C validator |