| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > dfss2f | Unicode version | ||
| Description: Equivalence for subclass relation, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 3-Jul-1994.) (Revised by Andrew Salmon, 27-Aug-2011.) | 
| Ref | Expression | 
|---|---|
| dfss2f.1 | 
 | 
| dfss2f.2 | 
 | 
| Ref | Expression | 
|---|---|
| dfss2f | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | dfss2 3263 | 
. 2
 | |
| 2 | dfss2f.1 | 
. . . . 5
 | |
| 3 | 2 | nfcri 2484 | 
. . . 4
 | 
| 4 | dfss2f.2 | 
. . . . 5
 | |
| 5 | 4 | nfcri 2484 | 
. . . 4
 | 
| 6 | 3, 5 | nfim 1813 | 
. . 3
 | 
| 7 | nfv 1619 | 
. . 3
 | |
| 8 | eleq1 2413 | 
. . . 4
 | |
| 9 | eleq1 2413 | 
. . . 4
 | |
| 10 | 8, 9 | imbi12d 311 | 
. . 3
 | 
| 11 | 6, 7, 10 | cbval 1984 | 
. 2
 | 
| 12 | 1, 11 | bitri 240 | 
1
 | 
| Colors of variables: wff setvar class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 | 
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-ss 3260 | 
| This theorem is referenced by: dfss3f 3266 ss2ab 3335 | 
| Copyright terms: Public domain | W3C validator |