New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > dfss2f | GIF version |
Description: Equivalence for subclass relation, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 3-Jul-1994.) (Revised by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
dfss2f.1 | ⊢ ℲxA |
dfss2f.2 | ⊢ ℲxB |
Ref | Expression |
---|---|
dfss2f | ⊢ (A ⊆ B ↔ ∀x(x ∈ A → x ∈ B)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfss2 3263 | . 2 ⊢ (A ⊆ B ↔ ∀z(z ∈ A → z ∈ B)) | |
2 | dfss2f.1 | . . . . 5 ⊢ ℲxA | |
3 | 2 | nfcri 2484 | . . . 4 ⊢ Ⅎx z ∈ A |
4 | dfss2f.2 | . . . . 5 ⊢ ℲxB | |
5 | 4 | nfcri 2484 | . . . 4 ⊢ Ⅎx z ∈ B |
6 | 3, 5 | nfim 1813 | . . 3 ⊢ Ⅎx(z ∈ A → z ∈ B) |
7 | nfv 1619 | . . 3 ⊢ Ⅎz(x ∈ A → x ∈ B) | |
8 | eleq1 2413 | . . . 4 ⊢ (z = x → (z ∈ A ↔ x ∈ A)) | |
9 | eleq1 2413 | . . . 4 ⊢ (z = x → (z ∈ B ↔ x ∈ B)) | |
10 | 8, 9 | imbi12d 311 | . . 3 ⊢ (z = x → ((z ∈ A → z ∈ B) ↔ (x ∈ A → x ∈ B))) |
11 | 6, 7, 10 | cbval 1984 | . 2 ⊢ (∀z(z ∈ A → z ∈ B) ↔ ∀x(x ∈ A → x ∈ B)) |
12 | 1, 11 | bitri 240 | 1 ⊢ (A ⊆ B ↔ ∀x(x ∈ A → x ∈ B)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∀wal 1540 = wceq 1642 ∈ wcel 1710 Ⅎwnfc 2477 ⊆ wss 3258 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-ss 3260 |
This theorem is referenced by: dfss3f 3266 ss2ab 3335 |
Copyright terms: Public domain | W3C validator |