New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > elrab | GIF version |
Description: Membership in a restricted class abstraction, using implicit substitution. (Contributed by NM, 21-May-1999.) |
Ref | Expression |
---|---|
elrab.1 | ⊢ (x = A → (φ ↔ ψ)) |
Ref | Expression |
---|---|
elrab | ⊢ (A ∈ {x ∈ B ∣ φ} ↔ (A ∈ B ∧ ψ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2490 | . 2 ⊢ ℲxA | |
2 | nfcv 2490 | . 2 ⊢ ℲxB | |
3 | nfv 1619 | . 2 ⊢ Ⅎxψ | |
4 | elrab.1 | . 2 ⊢ (x = A → (φ ↔ ψ)) | |
5 | 1, 2, 3, 4 | elrabf 2994 | 1 ⊢ (A ∈ {x ∈ B ∣ φ} ↔ (A ∈ B ∧ ψ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 = wceq 1642 ∈ wcel 1710 {crab 2619 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-rab 2624 df-v 2862 |
This theorem is referenced by: elrab3 2996 elrab2 2997 ralrab 2999 rexrab 3001 rabsnt 3798 unimax 3926 ssintub 3945 intminss 3953 elpmg 6014 nmembers1lem1 6269 nmembers1lem3 6271 |
Copyright terms: Public domain | W3C validator |