| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > eluni1g | Unicode version | ||
| Description: Membership in a unit union. (Contributed by SF, 15-Mar-2015.) |
| Ref | Expression |
|---|---|
| eluni1g |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-uni1 4139 |
. . . 4
| |
| 2 | 1 | eleq2i 2417 |
. . 3
|
| 3 | eluni 3895 |
. . 3
| |
| 4 | elin 3220 |
. . . . . . . 8
| |
| 5 | ancom 437 |
. . . . . . . 8
| |
| 6 | el1c 4140 |
. . . . . . . . . 10
| |
| 7 | 6 | anbi1i 676 |
. . . . . . . . 9
|
| 8 | 19.41v 1901 |
. . . . . . . . 9
| |
| 9 | 7, 8 | bitr4i 243 |
. . . . . . . 8
|
| 10 | 4, 5, 9 | 3bitri 262 |
. . . . . . 7
|
| 11 | 10 | anbi2i 675 |
. . . . . 6
|
| 12 | 19.42v 1905 |
. . . . . 6
| |
| 13 | 11, 12 | bitr4i 243 |
. . . . 5
|
| 14 | 13 | exbii 1582 |
. . . 4
|
| 15 | excom 1741 |
. . . 4
| |
| 16 | an12 772 |
. . . . . . 7
| |
| 17 | 16 | exbii 1582 |
. . . . . 6
|
| 18 | snex 4112 |
. . . . . . 7
| |
| 19 | eleq2 2414 |
. . . . . . . . 9
| |
| 20 | vex 2863 |
. . . . . . . . . 10
| |
| 21 | 20 | elsnc2 3763 |
. . . . . . . . 9
|
| 22 | 19, 21 | syl6bb 252 |
. . . . . . . 8
|
| 23 | eleq1 2413 |
. . . . . . . 8
| |
| 24 | 22, 23 | anbi12d 691 |
. . . . . . 7
|
| 25 | 18, 24 | ceqsexv 2895 |
. . . . . 6
|
| 26 | eqcom 2355 |
. . . . . . 7
| |
| 27 | 26 | anbi1i 676 |
. . . . . 6
|
| 28 | 17, 25, 27 | 3bitri 262 |
. . . . 5
|
| 29 | 28 | exbii 1582 |
. . . 4
|
| 30 | 14, 15, 29 | 3bitri 262 |
. . 3
|
| 31 | 2, 3, 30 | 3bitri 262 |
. 2
|
| 32 | sneq 3745 |
. . . 4
| |
| 33 | 32 | eleq1d 2419 |
. . 3
|
| 34 | 33 | ceqsexgv 2972 |
. 2
|
| 35 | 31, 34 | syl5bb 248 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-sn 4088 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-ss 3260 df-nul 3552 df-sn 3742 df-uni 3893 df-1c 4137 df-uni1 4139 |
| This theorem is referenced by: eluni1 4174 |
| Copyright terms: Public domain | W3C validator |