New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > eluni1g | Unicode version |
Description: Membership in a unit union. (Contributed by SF, 15-Mar-2015.) |
Ref | Expression |
---|---|
eluni1g | ⋃1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-uni1 4139 | . . . 4 ⋃1 1c | |
2 | 1 | eleq2i 2417 | . . 3 ⋃1 1c |
3 | eluni 3895 | . . 3 1c 1c | |
4 | elin 3220 | . . . . . . . 8 1c 1c | |
5 | ancom 437 | . . . . . . . 8 1c 1c | |
6 | el1c 4140 | . . . . . . . . . 10 1c | |
7 | 6 | anbi1i 676 | . . . . . . . . 9 1c |
8 | 19.41v 1901 | . . . . . . . . 9 | |
9 | 7, 8 | bitr4i 243 | . . . . . . . 8 1c |
10 | 4, 5, 9 | 3bitri 262 | . . . . . . 7 1c |
11 | 10 | anbi2i 675 | . . . . . 6 1c |
12 | 19.42v 1905 | . . . . . 6 | |
13 | 11, 12 | bitr4i 243 | . . . . 5 1c |
14 | 13 | exbii 1582 | . . . 4 1c |
15 | excom 1741 | . . . 4 | |
16 | an12 772 | . . . . . . 7 | |
17 | 16 | exbii 1582 | . . . . . 6 |
18 | snex 4112 | . . . . . . 7 | |
19 | eleq2 2414 | . . . . . . . . 9 | |
20 | vex 2863 | . . . . . . . . . 10 | |
21 | 20 | elsnc2 3763 | . . . . . . . . 9 |
22 | 19, 21 | syl6bb 252 | . . . . . . . 8 |
23 | eleq1 2413 | . . . . . . . 8 | |
24 | 22, 23 | anbi12d 691 | . . . . . . 7 |
25 | 18, 24 | ceqsexv 2895 | . . . . . 6 |
26 | eqcom 2355 | . . . . . . 7 | |
27 | 26 | anbi1i 676 | . . . . . 6 |
28 | 17, 25, 27 | 3bitri 262 | . . . . 5 |
29 | 28 | exbii 1582 | . . . 4 |
30 | 14, 15, 29 | 3bitri 262 | . . 3 1c |
31 | 2, 3, 30 | 3bitri 262 | . 2 ⋃1 |
32 | sneq 3745 | . . . 4 | |
33 | 32 | eleq1d 2419 | . . 3 |
34 | 33 | ceqsexgv 2972 | . 2 |
35 | 31, 34 | syl5bb 248 | 1 ⋃1 |
Colors of variables: wff setvar class |
Syntax hints: wi 4 wb 176 wa 358 wex 1541 wceq 1642 wcel 1710 cin 3209 csn 3738 cuni 3892 ⋃1cuni1 4134 1cc1c 4135 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-ss 3260 df-nul 3552 df-sn 3742 df-uni 3893 df-1c 4137 df-uni1 4139 |
This theorem is referenced by: eluni1 4174 |
Copyright terms: Public domain | W3C validator |