Step | Hyp | Ref
| Expression |
1 | | df-uni1 4139 |
. . . 4
⊢
⋃1B = ∪(B ∩
1c) |
2 | 1 | eleq2i 2417 |
. . 3
⊢ (A ∈
⋃1B ↔ A ∈ ∪(B ∩
1c)) |
3 | | eluni 3895 |
. . 3
⊢ (A ∈ ∪(B ∩
1c) ↔ ∃x(A ∈ x ∧ x ∈ (B ∩
1c))) |
4 | | elin 3220 |
. . . . . . . 8
⊢ (x ∈ (B ∩ 1c) ↔ (x ∈ B ∧ x ∈
1c)) |
5 | | ancom 437 |
. . . . . . . 8
⊢ ((x ∈ B ∧ x ∈
1c) ↔ (x ∈ 1c ∧ x ∈ B)) |
6 | | el1c 4140 |
. . . . . . . . . 10
⊢ (x ∈
1c ↔ ∃y x = {y}) |
7 | 6 | anbi1i 676 |
. . . . . . . . 9
⊢ ((x ∈
1c ∧ x ∈ B) ↔ (∃y x = {y} ∧ x ∈ B)) |
8 | | 19.41v 1901 |
. . . . . . . . 9
⊢ (∃y(x = {y} ∧ x ∈ B) ↔
(∃y
x = {y}
∧ x ∈ B)) |
9 | 7, 8 | bitr4i 243 |
. . . . . . . 8
⊢ ((x ∈
1c ∧ x ∈ B) ↔ ∃y(x = {y} ∧ x ∈ B)) |
10 | 4, 5, 9 | 3bitri 262 |
. . . . . . 7
⊢ (x ∈ (B ∩ 1c) ↔ ∃y(x = {y} ∧ x ∈ B)) |
11 | 10 | anbi2i 675 |
. . . . . 6
⊢ ((A ∈ x ∧ x ∈ (B ∩ 1c)) ↔ (A ∈ x ∧ ∃y(x = {y} ∧ x ∈ B))) |
12 | | 19.42v 1905 |
. . . . . 6
⊢ (∃y(A ∈ x ∧ (x = {y} ∧ x ∈ B)) ↔
(A ∈
x ∧ ∃y(x = {y} ∧ x ∈ B))) |
13 | 11, 12 | bitr4i 243 |
. . . . 5
⊢ ((A ∈ x ∧ x ∈ (B ∩ 1c)) ↔ ∃y(A ∈ x ∧ (x = {y} ∧ x ∈ B))) |
14 | 13 | exbii 1582 |
. . . 4
⊢ (∃x(A ∈ x ∧ x ∈ (B ∩ 1c)) ↔ ∃x∃y(A ∈ x ∧ (x = {y} ∧ x ∈ B))) |
15 | | excom 1741 |
. . . 4
⊢ (∃x∃y(A ∈ x ∧ (x = {y} ∧ x ∈ B)) ↔
∃y∃x(A ∈ x ∧ (x = {y} ∧ x ∈ B))) |
16 | | an12 772 |
. . . . . . 7
⊢ ((A ∈ x ∧ (x = {y} ∧ x ∈ B)) ↔
(x = {y} ∧ (A ∈ x ∧ x ∈ B))) |
17 | 16 | exbii 1582 |
. . . . . 6
⊢ (∃x(A ∈ x ∧ (x = {y} ∧ x ∈ B)) ↔
∃x(x = {y} ∧ (A ∈ x ∧ x ∈ B))) |
18 | | snex 4112 |
. . . . . . 7
⊢ {y} ∈
V |
19 | | eleq2 2414 |
. . . . . . . . 9
⊢ (x = {y} →
(A ∈
x ↔ A ∈ {y})) |
20 | | vex 2863 |
. . . . . . . . . 10
⊢ y ∈
V |
21 | 20 | elsnc2 3763 |
. . . . . . . . 9
⊢ (A ∈ {y} ↔ A =
y) |
22 | 19, 21 | syl6bb 252 |
. . . . . . . 8
⊢ (x = {y} →
(A ∈
x ↔ A = y)) |
23 | | eleq1 2413 |
. . . . . . . 8
⊢ (x = {y} →
(x ∈
B ↔ {y} ∈ B)) |
24 | 22, 23 | anbi12d 691 |
. . . . . . 7
⊢ (x = {y} →
((A ∈
x ∧
x ∈
B) ↔ (A = y ∧ {y} ∈ B))) |
25 | 18, 24 | ceqsexv 2895 |
. . . . . 6
⊢ (∃x(x = {y} ∧ (A ∈ x ∧ x ∈ B)) ↔
(A = y
∧ {y}
∈ B)) |
26 | | eqcom 2355 |
. . . . . . 7
⊢ (A = y ↔
y = A) |
27 | 26 | anbi1i 676 |
. . . . . 6
⊢ ((A = y ∧ {y} ∈ B) ↔
(y = A
∧ {y}
∈ B)) |
28 | 17, 25, 27 | 3bitri 262 |
. . . . 5
⊢ (∃x(A ∈ x ∧ (x = {y} ∧ x ∈ B)) ↔
(y = A
∧ {y}
∈ B)) |
29 | 28 | exbii 1582 |
. . . 4
⊢ (∃y∃x(A ∈ x ∧ (x = {y} ∧ x ∈ B)) ↔
∃y(y = A ∧ {y} ∈ B)) |
30 | 14, 15, 29 | 3bitri 262 |
. . 3
⊢ (∃x(A ∈ x ∧ x ∈ (B ∩ 1c)) ↔ ∃y(y = A ∧ {y} ∈ B)) |
31 | 2, 3, 30 | 3bitri 262 |
. 2
⊢ (A ∈
⋃1B ↔ ∃y(y = A ∧ {y} ∈ B)) |
32 | | sneq 3745 |
. . . 4
⊢ (y = A →
{y} = {A}) |
33 | 32 | eleq1d 2419 |
. . 3
⊢ (y = A →
({y} ∈
B ↔ {A} ∈ B)) |
34 | 33 | ceqsexgv 2972 |
. 2
⊢ (A ∈ V → (∃y(y = A ∧ {y} ∈ B) ↔
{A} ∈
B)) |
35 | 31, 34 | syl5bb 248 |
1
⊢ (A ∈ V → (A
∈ ⋃1B ↔ {A}
∈ B)) |