New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > eluni1 | Unicode version |
Description: Membership in a unit union. (Contributed by SF, 15-Mar-2015.) |
Ref | Expression |
---|---|
eluni1.1 |
Ref | Expression |
---|---|
eluni1 | ⋃1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluni1.1 | . 2 | |
2 | eluni1g 4172 | . 2 ⋃1 | |
3 | 1, 2 | ax-mp 5 | 1 ⋃1 |
Colors of variables: wff setvar class |
Syntax hints: wb 176 wcel 1710 cvv 2859 csn 3737 ⋃1cuni1 4133 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4078 ax-sn 4087 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-ne 2518 df-v 2861 df-nin 3211 df-compl 3212 df-in 3213 df-un 3214 df-dif 3215 df-ss 3259 df-nul 3551 df-sn 3741 df-uni 3892 df-1c 4136 df-uni1 4138 |
This theorem is referenced by: dfuni12 4291 dfuni3 4315 dfint3 4318 ncfinraiselem2 4480 nnpweqlem1 4522 sfintfinlem1 4531 tfinnnlem1 4533 vfinspclt 4552 setconslem4 4734 enpw1lem1 6061 nenpw1pwlem1 6084 nmembers1lem1 6268 nchoicelem16 6304 nchoicelem18 6306 |
Copyright terms: Public domain | W3C validator |