| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > eluni2 | GIF version | ||
| Description: Membership in class union. Restricted quantifier version. (Contributed by NM, 31-Aug-1999.) |
| Ref | Expression |
|---|---|
| eluni2 | ⊢ (A ∈ ∪B ↔ ∃x ∈ B A ∈ x) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exancom 1586 | . 2 ⊢ (∃x(A ∈ x ∧ x ∈ B) ↔ ∃x(x ∈ B ∧ A ∈ x)) | |
| 2 | eluni 3895 | . 2 ⊢ (A ∈ ∪B ↔ ∃x(A ∈ x ∧ x ∈ B)) | |
| 3 | df-rex 2621 | . 2 ⊢ (∃x ∈ B A ∈ x ↔ ∃x(x ∈ B ∧ A ∈ x)) | |
| 4 | 1, 2, 3 | 3bitr4i 268 | 1 ⊢ (A ∈ ∪B ↔ ∃x ∈ B A ∈ x) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 176 ∧ wa 358 ∃wex 1541 ∈ wcel 1710 ∃wrex 2616 ∪cuni 3892 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-rex 2621 df-v 2862 df-uni 3893 |
| This theorem is referenced by: uni0b 3917 intssuni 3949 iuncom4 3977 dfuni3 4316 eqpw1uni 4331 elfin 4421 cnvuni 4896 chfnrn 5400 |
| Copyright terms: Public domain | W3C validator |