New Foundations Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  NFE Home  >  Th. List  >  uni0b Unicode version

Theorem uni0b 3916
 Description: The union of a set is empty iff the set is included in the singleton of the empty set. (Contributed by NM, 12-Sep-2004.)
Assertion
Ref Expression
uni0b

Proof of Theorem uni0b
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elsn 3748 . . 3
21ralbii 2638 . 2
3 dfss3 3263 . 2
4 neq0 3560 . . . 4
5 rexcom4 2878 . . . . 5
6 neq0 3560 . . . . . 6
76rexbii 2639 . . . . 5
8 eluni2 3895 . . . . . 6
98exbii 1582 . . . . 5
105, 7, 93bitr4ri 269 . . . 4
11 rexnal 2625 . . . 4
124, 10, 113bitri 262 . . 3
1312con4bii 288 . 2
142, 3, 133bitr4ri 269 1
 Colors of variables: wff setvar class Syntax hints:   wn 3   wb 176  wex 1541   wceq 1642   wcel 1710  wral 2614  wrex 2615   wss 3257  c0 3550  csn 3737  cuni 3891 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2478  df-ne 2518  df-ral 2619  df-rex 2620  df-v 2861  df-nin 3211  df-compl 3212  df-in 3213  df-dif 3215  df-ss 3259  df-nul 3551  df-sn 3741  df-uni 3892 This theorem is referenced by:  uni0c  3917  uni0  3918
 Copyright terms: Public domain W3C validator