NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  elunii Unicode version

Theorem elunii 3897
Description: Membership in class union. (Contributed by NM, 24-Mar-1995.)
Assertion
Ref Expression
elunii

Proof of Theorem elunii
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 eleq2 2414 . . . . 5
2 eleq1 2413 . . . . 5
31, 2anbi12d 691 . . . 4
43spcegv 2941 . . 3
54anabsi7 792 . 2
6 eluni 3895 . 2
75, 6sylibr 203 1
Colors of variables: wff setvar class
Syntax hints:   wi 4   wa 358  wex 1541   wceq 1642   wcel 1710  cuni 3892
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-v 2862  df-uni 3893
This theorem is referenced by:  ssuni  3914  unipw  4118  nnadjoin  4521  sfinltfin  4536  nulnnn  4557
  Copyright terms: Public domain W3C validator