NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  epprc Unicode version

Theorem epprc 5828
Description: The membership relationship is a proper class. This theorem together with vvex 4110 demonstrates the basic idea behind New Foundations: since is not a stratified relationship, then it does not have a realization as a set of ordered pairs, but since is stratified, then it does have a realization as a set. (Contributed by SF, 20-Feb-2015.)
Assertion
Ref Expression
epprc

Proof of Theorem epprc
StepHypRef Expression
1 ru 3046 . . 3
2 df-nel 2520 . . 3
31, 2mpbi 199 . 2
4 elfix 5788 . . . . . . 7
5 epel 4767 . . . . . . 7
64, 5bitri 240 . . . . . 6
76notbii 287 . . . . 5
8 vex 2863 . . . . . 6
98elcompl 3226 . . . . 5
10 df-nel 2520 . . . . 5
117, 9, 103bitr4i 268 . . . 4
1211abbi2i 2465 . . 3
13 fixexg 5789 . . . 4
14 complexg 4100 . . . 4
1513, 14syl 15 . . 3
1612, 15syl5eqelr 2438 . 2
173, 16mto 167 1
Colors of variables: wff setvar class
Syntax hints:   wn 3   wcel 1710  cab 2339   wnel 2518  cvv 2860   ∼ ccompl 3206   class class class wbr 4640   cep 4763  cfix 5740
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-nel 2520  df-ral 2620  df-rex 2621  df-reu 2622  df-rmo 2623  df-rab 2624  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-pss 3262  df-nul 3552  df-if 3664  df-pw 3725  df-sn 3742  df-pr 3743  df-uni 3893  df-int 3928  df-opk 4059  df-1c 4137  df-pw1 4138  df-uni1 4139  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191  df-p6 4192  df-sik 4193  df-ssetk 4194  df-imagek 4195  df-idk 4196  df-iota 4340  df-0c 4378  df-addc 4379  df-nnc 4380  df-fin 4381  df-lefin 4441  df-ltfin 4442  df-ncfin 4443  df-tfin 4444  df-evenfin 4445  df-oddfin 4446  df-sfin 4447  df-spfin 4448  df-phi 4566  df-op 4567  df-proj1 4568  df-proj2 4569  df-opab 4624  df-br 4641  df-swap 4725  df-sset 4726  df-ima 4728  df-eprel 4765  df-id 4768  df-cnv 4786  df-rn 4787  df-fix 5741
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator