New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > syl5eqelr | Unicode version |
Description: B membership and equality inference. (Contributed by NM, 4-Jan-2006.) |
Ref | Expression |
---|---|
syl5eqelr.1 | |
syl5eqelr.2 |
Ref | Expression |
---|---|
syl5eqelr |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl5eqelr.1 | . . 3 | |
2 | 1 | eqcomi 2357 | . 2 |
3 | syl5eqelr.2 | . 2 | |
4 | 2, 3 | syl5eqel 2437 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wi 4 wceq 1642 wcel 1710 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-cleq 2346 df-clel 2349 |
This theorem is referenced by: xpkexg 4288 pw1exb 4326 nncaddccl 4419 0cminle 4461 vfinspsslem1 4550 opexb 4603 cnvexb 5103 epprc 5827 frds 5935 ovmuc 6130 ovcelem1 6171 ce2t 6235 addccan2nclem2 6264 fnfreclem1 6317 elscan 6330 |
Copyright terms: Public domain | W3C validator |