![]() |
New Foundations Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > NFE Home > Th. List > syl5eqelr | Unicode version |
Description: B membership and equality inference. (Contributed by NM, 4-Jan-2006.) |
Ref | Expression |
---|---|
syl5eqelr.1 |
![]() ![]() ![]() ![]() |
syl5eqelr.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
syl5eqelr |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl5eqelr.1 |
. . 3
![]() ![]() ![]() ![]() | |
2 | 1 | eqcomi 2357 |
. 2
![]() ![]() ![]() ![]() |
3 | syl5eqelr.2 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | syl5eqel 2437 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-cleq 2346 df-clel 2349 |
This theorem is referenced by: xpkexg 4289 pw1exb 4327 nncaddccl 4420 0cminle 4462 vfinspsslem1 4551 opexb 4604 cnvexb 5104 epprc 5828 frds 5936 ovmuc 6131 ovcelem1 6172 ce2t 6236 addccan2nclem2 6265 fnfreclem1 6318 elscan 6331 |
Copyright terms: Public domain | W3C validator |