New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > imaeq1 | GIF version |
Description: Equality theorem for image. (Contributed by set.mm contributors, 14-Aug-1994.) |
Ref | Expression |
---|---|
imaeq1 | ⊢ (A = B → (A “ C) = (B “ C)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq 4642 | . . . 4 ⊢ (A = B → (yAx ↔ yBx)) | |
2 | 1 | rexbidv 2636 | . . 3 ⊢ (A = B → (∃y ∈ C yAx ↔ ∃y ∈ C yBx)) |
3 | 2 | abbidv 2468 | . 2 ⊢ (A = B → {x ∣ ∃y ∈ C yAx} = {x ∣ ∃y ∈ C yBx}) |
4 | df-ima 4728 | . 2 ⊢ (A “ C) = {x ∣ ∃y ∈ C yAx} | |
5 | df-ima 4728 | . 2 ⊢ (B “ C) = {x ∣ ∃y ∈ C yBx} | |
6 | 3, 4, 5 | 3eqtr4g 2410 | 1 ⊢ (A = B → (A “ C) = (B “ C)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1642 {cab 2339 ∃wrex 2616 class class class wbr 4640 “ cima 4723 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-rex 2621 df-br 4641 df-ima 4728 |
This theorem is referenced by: imaeq1i 4940 imaeq1d 4942 rneq 4957 f1imacnv 5303 clos1eq2 5876 eceq2 5964 |
Copyright terms: Public domain | W3C validator |