NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  imaeq1 GIF version

Theorem imaeq1 4938
Description: Equality theorem for image. (Contributed by set.mm contributors, 14-Aug-1994.)
Assertion
Ref Expression
imaeq1 (A = B → (AC) = (BC))

Proof of Theorem imaeq1
Dummy variables x y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq 4642 . . . 4 (A = B → (yAxyBx))
21rexbidv 2636 . . 3 (A = B → (y C yAxy C yBx))
32abbidv 2468 . 2 (A = B → {x y C yAx} = {x y C yBx})
4 df-ima 4728 . 2 (AC) = {x y C yAx}
5 df-ima 4728 . 2 (BC) = {x y C yBx}
63, 4, 53eqtr4g 2410 1 (A = B → (AC) = (BC))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1642  {cab 2339  wrex 2616   class class class wbr 4640  cima 4723
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-rex 2621  df-br 4641  df-ima 4728
This theorem is referenced by:  imaeq1i  4940  imaeq1d  4942  rneq  4957  f1imacnv  5303  clos1eq2  5876  eceq2  5964
  Copyright terms: Public domain W3C validator