| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > ins3kss | Unicode version | ||
| Description: Subset law for Ins3k  | 
| Ref | Expression | 
|---|---|
| ins3kss | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | vex 2863 | 
. . . . 5
 | |
| 2 | vex 2863 | 
. . . . 5
 | |
| 3 | opkelins3kg 4253 | 
. . . . 5
 | |
| 4 | 1, 2, 3 | mp2an 653 | 
. . . 4
 | 
| 5 | opkeq12 4062 | 
. . . . . . . 8
 | |
| 6 | vex 2863 | 
. . . . . . . . . . 11
 | |
| 7 | 6 | snel1c 4141 | 
. . . . . . . . . 10
 | 
| 8 | snelpw1 4147 | 
. . . . . . . . . 10
 | |
| 9 | 7, 8 | mpbir 200 | 
. . . . . . . . 9
 | 
| 10 | vex 2863 | 
. . . . . . . . . 10
 | |
| 11 | vex 2863 | 
. . . . . . . . . 10
 | |
| 12 | 10, 11 | opkelxpk 4249 | 
. . . . . . . . . 10
 | 
| 13 | 10, 11, 12 | mpbir2an 886 | 
. . . . . . . . 9
 | 
| 14 | snex 4112 | 
. . . . . . . . . 10
 | |
| 15 | opkex 4114 | 
. . . . . . . . . 10
 | |
| 16 | 14, 15 | opkelxpk 4249 | 
. . . . . . . . 9
 | 
| 17 | 9, 13, 16 | mpbir2an 886 | 
. . . . . . . 8
 | 
| 18 | 5, 17 | syl6eqel 2441 | 
. . . . . . 7
 | 
| 19 | 18 | 3adant3 975 | 
. . . . . 6
 | 
| 20 | 19 | exlimiv 1634 | 
. . . . 5
 | 
| 21 | 20 | exlimivv 1635 | 
. . . 4
 | 
| 22 | 4, 21 | sylbi 187 | 
. . 3
 | 
| 23 | 22 | gen2 1547 | 
. 2
 | 
| 24 | df-ins3k 4189 | 
. . . 4
 | |
| 25 | 24 | opkabssvvki 4210 | 
. . 3
 | 
| 26 | ssrelk 4212 | 
. . 3
 | |
| 27 | 25, 26 | ax-mp 5 | 
. 2
 | 
| 28 | 23, 27 | mpbir 200 | 
1
 | 
| Colors of variables: wff setvar class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-sn 4088 | 
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-ss 3260 df-nul 3552 df-pw 3725 df-sn 3742 df-pr 3743 df-opk 4059 df-1c 4137 df-pw1 4138 df-xpk 4186 df-ins3k 4189 | 
| This theorem is referenced by: ins3kexg 4307 | 
| Copyright terms: Public domain | W3C validator |